@@ -108,7 +108,7 @@ Density estimates using different corrections in 5 types of land cover
108
108
1 . Normalize and join data from projects,
109
109
2 . take multiple-duration subset and fit removal models,
110
110
3 . take multiple-distance subset and fit distance sampling models,
111
- 4 . predict $p$ and $g$ for all surveys,
111
+ 4 . predict $p$ and $q$ (or $A$) for all surveys,
112
112
5 . use $log(Apq)$ offsets in log-linear models with total counts as response.
113
113
114
114
Removal and distance models can deal with multiple methodologies in the same model.
@@ -117,15 +117,59 @@ Each modeling step can include covariates, which can be the same.
117
117
118
118
***
119
119
120
- # Advantages of this approach
120
+ # What to do if you can't estimate $p$ & $q$
121
+
122
+ See if you can use estimates from similar species.
123
+
124
+ - phylogenetic correlation
125
+ - trait info
126
+
127
+ [ lhreg R package] ( https://borealbirds.github.io/lhreg/ )
128
+
129
+ ***
130
+
131
+ # What to do if you can't estimate $p$ & $q$
132
+
133
+ See if you can use estimates from similar studies.
134
+
135
+ - the species code
136
+ - coordinates and time
137
+ - max duration and distance
138
+
139
+ [ BAM QPAD offsets] ( https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md )
140
+
141
+ ***
142
+
143
+ # Advantages
121
144
122
145
- Smaller parameter space,
123
- - less colinearity,
124
146
- straightforward model selection,
147
+ - less colinearity,
125
148
- quicker than joint modeling via integrated likelihood.
126
149
127
150
***
128
151
152
+ # Advantages
153
+
154
+ \centering
155
+ ``` {r echo=FALSE,fig.show="hold", out.width="49%"}
156
+ include_graphics("images/variable-selection-1.png")
157
+ include_graphics("images/variable-selection-2.png")
158
+ ```
159
+
160
+ ***
161
+
162
+ # Disadvantages
163
+
164
+ - Taking care of uncertainty needs more work
165
+
166
+ ***
167
+
168
+ \centering
169
+ ** BREAK**
170
+
171
+ ***
172
+
129
173
# Recordings for acoustic surveys
130
174
131
175
Non-autonomous recording equipment have been used to
@@ -259,7 +303,7 @@ The recognizer gives a probabilistic output (reliability score) for each detecti
259
303
# Human PC--ARU detectability differences
260
304
261
305
\centering
262
- ``` {r echo=FALSE,out.width="150px "}
306
+ ``` {r echo=FALSE,out.width="130px "}
263
307
include_graphics("images/yip-2017-ace-fig-1.jpg")
264
308
```
265
309
@@ -401,8 +445,8 @@ Using $\hat{\Delta}^2$ as adjustment really helps in integrating human PC and AR
401
445
402
446
# Roadside bias
403
447
404
- Roadside bias captures the different between a roadside survey count ($E[ Y_R] $)
405
- and a count done in a similar off-road envoronment ($E[ Y_H] $).
448
+ Roadside bias captures the difference between a roadside survey count ($E[ Y_R] $)
449
+ and a count done in a similar off-road environment ($E[ Y_H] $).
406
450
407
451
Large variation across species:
408
452
@@ -578,7 +622,6 @@ Yip et al. 2017, [Condor](http://dx.doi.org/10.1650/CONDOR-16-93.1).
578
622
579
623
# Sound attenuation: direction matters
580
624
581
-
582
625
\centering
583
626
``` {r echo=FALSE,out.width="180px"}
584
627
include_graphics("images/distance-HER.png")
@@ -599,7 +642,8 @@ I usually combine some filtering with fixed effects.
599
642
600
643
# The frontier
601
644
602
- - More and more ARU data: how to optimize transcription, time to 1st detection information
645
+ - More and more ARU data: how to optimize transcription, time to 1st detection information, etc.
646
+ - Automated species detection and distance estimation
603
647
- Robust & simple methods to integrate repeated visits without assuming closure
604
648
- Corrections for eBird data
605
649
- Corrections for roadside (BBS) data
@@ -650,6 +694,26 @@ Bias depends on sampling and species
650
694
651
695
***
652
696
697
+ # Alberta results
698
+
699
+ Alberta Biodiversity Monitoring Institute and Boreal Avian Modelling Project
700
+
701
+ 126 species
702
+
703
+ [ science.abmi.ca/birds] ( https://science.abmi.ca/birds/ )
704
+
705
+ ***
706
+
707
+ # National model results
708
+
709
+ Boreal Avian Modelling Project
710
+
711
+ 143 species
712
+
713
+ [ borealbirds.github.io] ( https://borealbirds.github.io/ )
714
+
715
+ ***
716
+
653
717
# NA-POPS
654
718
655
719
Point count Offsets for Population Sizes of North America landbirds
0 commit comments