This repository has been archived by the owner on May 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.py
69 lines (55 loc) · 2.09 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Imports
from stockapi import getStockData
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
from scipy.optimize import minimize
import json
def Optimize(stocks,size):
# stocks is an array of ticker symbols
stock_dfs = {}
for ticker in stocks:
print(ticker)
stock_dfs[ticker] = getStockData(ticker,size=size)
stock = pd.concat(list(stock_dfs.values()),axis=1)
stock.columns = list(stock_dfs.keys())
stock = stock.loc[~(stock==0).any(axis=1)]
stock.dropna(inplace=True)
#log returns - normalising
log_ret = np.log(stock/stock.shift(1))
print(log_ret.head())
num_ports = 1000
all_weights = np.zeros((num_ports,len(stock.columns)))
ret_arr = np.zeros(num_ports)
vol_arr = np.zeros(num_ports)
sharpe_arr = np.zeros(num_ports)
for ind in range(num_ports):
# Create Random Weights
weights = np.array(np.random.random(len(stock.columns)))
# Rebalance Weights
weights = weights / np.sum(weights)
# Save Weights
all_weights[ind,:] = weights
# Expected Return
ret_arr[ind] = np.sum((log_ret.mean() * weights) *252)
# Expected Variance
vol_arr[ind] = np.sqrt(np.dot(weights.T, np.dot(log_ret.cov() * 252, weights)))
# Sharpe Ratio
sharpe_arr[ind] = ret_arr[ind]/vol_arr[ind]
maxSharpe = sharpe_arr.max()
maxSharpeIndex = sharpe_arr.argmax()
max_sr_ret = ret_arr[maxSharpeIndex]
max_sr_vol = vol_arr[maxSharpeIndex]
# plt.figure(figsize=(12,8))
# plt.scatter(vol_arr,ret_arr,c=sharpe_arr,cmap='plasma')
# plt.colorbar(label='Sharpe Ratio')
# plt.xlabel('Volatility')
# plt.ylabel('Return')
# plt.scatter(max_sr_vol,max_sr_ret,c='black',s=50,edgecolors='black')
# plt.savefig('./viz/efh.png')
# Add frontier line
# plt.plot(frontier_volatility,frontier_y,'g--',linewidth=3)
# plt.savefig('./viz/efh1.png')
return {'allocation':list(all_weights[maxSharpeIndex,:]),
'maxSharpeRatio':maxSharpe,
'stockData':stock.to_json(orient='columns')}