|
| 1 | +################################################################################# |
| 2 | +# To compare the performance of numexpr when free-threading CPython is used. |
| 3 | +# |
| 4 | +# This example makes use of Python threads, as opposed to C native ones |
| 5 | +# in order to highlight the improvement introduced by free-threading CPython, |
| 6 | +# which now disables the GIL altogether. |
| 7 | +################################################################################# |
| 8 | +""" |
| 9 | +Results with GIL-enabled CPython: |
| 10 | +
|
| 11 | +Benchmarking Expression 1: |
| 12 | +NumPy time (threaded over 32 chunks with 16 threads): 1.173090 seconds |
| 13 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 0.951071 seconds |
| 14 | +numexpr speedup: 1.23x |
| 15 | +---------------------------------------- |
| 16 | +Benchmarking Expression 2: |
| 17 | +NumPy time (threaded over 32 chunks with 16 threads): 10.410874 seconds |
| 18 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 8.248753 seconds |
| 19 | +numexpr speedup: 1.26x |
| 20 | +---------------------------------------- |
| 21 | +Benchmarking Expression 3: |
| 22 | +NumPy time (threaded over 32 chunks with 16 threads): 9.605909 seconds |
| 23 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 11.087108 seconds |
| 24 | +numexpr speedup: 0.87x |
| 25 | +---------------------------------------- |
| 26 | +Benchmarking Expression 4: |
| 27 | +NumPy time (threaded over 32 chunks with 16 threads): 3.836962 seconds |
| 28 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 18.054531 seconds |
| 29 | +numexpr speedup: 0.21x |
| 30 | +---------------------------------------- |
| 31 | +
|
| 32 | +Results with free-threading CPython: |
| 33 | +
|
| 34 | +Benchmarking Expression 1: |
| 35 | +NumPy time (threaded over 32 chunks with 16 threads): 3.415349 seconds |
| 36 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 2.618876 seconds |
| 37 | +numexpr speedup: 1.30x |
| 38 | +---------------------------------------- |
| 39 | +Benchmarking Expression 2: |
| 40 | +NumPy time (threaded over 32 chunks with 16 threads): 19.005238 seconds |
| 41 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 12.611407 seconds |
| 42 | +numexpr speedup: 1.51x |
| 43 | +---------------------------------------- |
| 44 | +Benchmarking Expression 3: |
| 45 | +NumPy time (threaded over 32 chunks with 16 threads): 20.555149 seconds |
| 46 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 17.690749 seconds |
| 47 | +numexpr speedup: 1.16x |
| 48 | +---------------------------------------- |
| 49 | +Benchmarking Expression 4: |
| 50 | +NumPy time (threaded over 32 chunks with 16 threads): 38.338372 seconds |
| 51 | +numexpr time (threaded with re_evaluate over 32 chunks with 16 threads): 35.074684 seconds |
| 52 | +numexpr speedup: 1.09x |
| 53 | +---------------------------------------- |
| 54 | +""" |
| 55 | + |
| 56 | +import os |
| 57 | + |
| 58 | +os.environ["NUMEXPR_NUM_THREADS"] = "2" |
| 59 | +import threading |
| 60 | +import timeit |
| 61 | + |
| 62 | +import numpy as np |
| 63 | + |
| 64 | +import numexpr as ne |
| 65 | + |
| 66 | +array_size = 10**8 |
| 67 | +num_runs = 10 |
| 68 | +num_chunks = 32 # Number of chunks |
| 69 | +num_threads = 16 # Number of threads constrained by how many chunks memory can hold |
| 70 | + |
| 71 | +a = np.random.rand(array_size).reshape(10**4, -1) |
| 72 | +b = np.random.rand(array_size).reshape(10**4, -1) |
| 73 | +c = np.random.rand(array_size).reshape(10**4, -1) |
| 74 | + |
| 75 | +chunk_size = array_size // num_chunks |
| 76 | + |
| 77 | +expressions_numpy = [ |
| 78 | + lambda a, b, c: a + b * c, |
| 79 | + lambda a, b, c: a**2 + b**2 - 2 * a * b * np.cos(c), |
| 80 | + lambda a, b, c: np.sin(a) + np.log(b) * np.sqrt(c), |
| 81 | + lambda a, b, c: np.exp(a) + np.tan(b) - np.sinh(c), |
| 82 | +] |
| 83 | + |
| 84 | +expressions_numexpr = [ |
| 85 | + "a + b * c", |
| 86 | + "a**2 + b**2 - 2 * a * b * cos(c)", |
| 87 | + "sin(a) + log(b) * sqrt(c)", |
| 88 | + "exp(a) + tan(b) - sinh(c)", |
| 89 | +] |
| 90 | + |
| 91 | + |
| 92 | +def benchmark_numpy_chunk(func, a, b, c, results, indices): |
| 93 | + for index in indices: |
| 94 | + start = index * chunk_size |
| 95 | + end = (index + 1) * chunk_size |
| 96 | + time_taken = timeit.timeit( |
| 97 | + lambda: func(a[start:end], b[start:end], c[start:end]), number=num_runs |
| 98 | + ) |
| 99 | + results.append(time_taken) |
| 100 | + |
| 101 | + |
| 102 | +def benchmark_numexpr_re_evaluate(expr, a, b, c, results, indices): |
| 103 | + for index in indices: |
| 104 | + start = index * chunk_size |
| 105 | + end = (index + 1) * chunk_size |
| 106 | + # if index == 0: |
| 107 | + # Evaluate the first chunk with evaluate |
| 108 | + time_taken = timeit.timeit( |
| 109 | + lambda: ne.evaluate( |
| 110 | + expr, |
| 111 | + local_dict={ |
| 112 | + "a": a[start:end], |
| 113 | + "b": b[start:end], |
| 114 | + "c": c[start:end], |
| 115 | + }, |
| 116 | + ), |
| 117 | + number=num_runs, |
| 118 | + ) |
| 119 | + results.append(time_taken) |
| 120 | + |
| 121 | + |
| 122 | +def run_benchmark_threaded(): |
| 123 | + chunk_indices = list(range(num_chunks)) |
| 124 | + |
| 125 | + for i in range(len(expressions_numpy)): |
| 126 | + print(f"Benchmarking Expression {i+1}:") |
| 127 | + |
| 128 | + results_numpy = [] |
| 129 | + results_numexpr = [] |
| 130 | + |
| 131 | + threads_numpy = [] |
| 132 | + for j in range(num_threads): |
| 133 | + indices = chunk_indices[j::num_threads] # Distribute chunks across threads |
| 134 | + thread = threading.Thread( |
| 135 | + target=benchmark_numpy_chunk, |
| 136 | + args=(expressions_numpy[i], a, b, c, results_numpy, indices), |
| 137 | + ) |
| 138 | + threads_numpy.append(thread) |
| 139 | + thread.start() |
| 140 | + |
| 141 | + for thread in threads_numpy: |
| 142 | + thread.join() |
| 143 | + |
| 144 | + numpy_time = sum(results_numpy) |
| 145 | + print( |
| 146 | + f"NumPy time (threaded over {num_chunks} chunks with {num_threads} threads): {numpy_time:.6f} seconds" |
| 147 | + ) |
| 148 | + |
| 149 | + threads_numexpr = [] |
| 150 | + for j in range(num_threads): |
| 151 | + indices = chunk_indices[j::num_threads] # Distribute chunks across threads |
| 152 | + thread = threading.Thread( |
| 153 | + target=benchmark_numexpr_re_evaluate, |
| 154 | + args=(expressions_numexpr[i], a, b, c, results_numexpr, indices), |
| 155 | + ) |
| 156 | + threads_numexpr.append(thread) |
| 157 | + thread.start() |
| 158 | + |
| 159 | + for thread in threads_numexpr: |
| 160 | + thread.join() |
| 161 | + |
| 162 | + numexpr_time = sum(results_numexpr) |
| 163 | + print( |
| 164 | + f"numexpr time (threaded with re_evaluate over {num_chunks} chunks with {num_threads} threads): {numexpr_time:.6f} seconds" |
| 165 | + ) |
| 166 | + print(f"numexpr speedup: {numpy_time / numexpr_time:.2f}x") |
| 167 | + print("-" * 40) |
| 168 | + |
| 169 | + |
| 170 | +if __name__ == "__main__": |
| 171 | + run_benchmark_threaded() |
0 commit comments