|
| 1 | +import importlib |
| 2 | +import os |
| 3 | + |
| 4 | +import sparse |
| 5 | + |
| 6 | +from utils import benchmark |
| 7 | + |
| 8 | +import numpy as np |
| 9 | +import scipy.sparse as sps |
| 10 | + |
| 11 | +LEN = 100000 |
| 12 | +DENSITY = 0.00001 |
| 13 | +ITERS = 3 |
| 14 | +rng = np.random.default_rng(0) |
| 15 | + |
| 16 | + |
| 17 | +if __name__ == "__main__": |
| 18 | + print("Matmul Example:\n") |
| 19 | + |
| 20 | + a_sps = sps.random(LEN, LEN - 10, format="csr", density=DENSITY, random_state=rng) * 10 |
| 21 | + a_sps.sum_duplicates() |
| 22 | + b_sps = sps.random(LEN - 10, LEN, format="csr", density=DENSITY, random_state=rng) * 10 |
| 23 | + b_sps.sum_duplicates() |
| 24 | + |
| 25 | + # ======= Finch ======= |
| 26 | + os.environ[sparse._ENV_VAR_NAME] = "Finch" |
| 27 | + importlib.reload(sparse) |
| 28 | + |
| 29 | + a = sparse.asarray(a_sps) |
| 30 | + b = sparse.asarray(b_sps) |
| 31 | + |
| 32 | + @sparse.compiled |
| 33 | + def sddmm_finch(a, b): |
| 34 | + return sparse.sum(a[:, None, :] * sparse.permute_dims(b, (1, 0))[None, :, :], axis=-1) |
| 35 | + |
| 36 | + # Compile |
| 37 | + result_finch = sddmm_finch(a, b) |
| 38 | + # Benchmark |
| 39 | + benchmark(sddmm_finch, args=[a, b], info="Finch", iters=ITERS) |
| 40 | + |
| 41 | + # ======= Numba ======= |
| 42 | + os.environ[sparse._ENV_VAR_NAME] = "Numba" |
| 43 | + importlib.reload(sparse) |
| 44 | + |
| 45 | + a = sparse.asarray(a_sps) |
| 46 | + b = sparse.asarray(b_sps) |
| 47 | + |
| 48 | + def sddmm_numba(a, b): |
| 49 | + return a @ b |
| 50 | + |
| 51 | + # Compile |
| 52 | + result_numba = sddmm_numba(a, b) |
| 53 | + # Benchmark |
| 54 | + benchmark(sddmm_numba, args=[a, b], info="Numba", iters=ITERS) |
| 55 | + |
| 56 | + # ======= SciPy ======= |
| 57 | + def sddmm_scipy(a, b): |
| 58 | + return a @ b |
| 59 | + |
| 60 | + a = a_sps |
| 61 | + b = b_sps |
| 62 | + |
| 63 | + result_scipy = sddmm_scipy(a, b) |
| 64 | + # Benchmark |
| 65 | + benchmark(sddmm_scipy, args=[a, b], info="SciPy", iters=ITERS) |
| 66 | + |
| 67 | + # np.testing.assert_allclose(result_numba.todense(), result_scipy.toarray()) |
| 68 | + # np.testing.assert_allclose(result_finch.todense(), result_numba.todense()) |
| 69 | + # np.testing.assert_allclose(result_finch.todense(), result_scipy.toarray()) |
0 commit comments