|
| 1 | +import time |
| 2 | + |
| 3 | +import sparse |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import scipy.sparse as sps |
| 7 | + |
| 8 | +LEN = 10000 |
| 9 | +DENSITY = 0.0001 |
| 10 | +ITERS = 3 |
| 11 | +rng = np.random.default_rng(0) |
| 12 | + |
| 13 | + |
| 14 | +def benchmark(func, info, args): |
| 15 | + print(info) |
| 16 | + start = time.time() |
| 17 | + for _ in range(ITERS): |
| 18 | + func(*args) |
| 19 | + elapsed = time.time() - start |
| 20 | + print(f"Took {elapsed / ITERS} s.\n") |
| 21 | + |
| 22 | + |
| 23 | +if __name__ == "__main__": |
| 24 | + a_sps = rng.random((LEN, LEN - 10)) * 10 |
| 25 | + b_sps = rng.random((LEN - 10, LEN)) * 10 |
| 26 | + s_sps = sps.random(LEN, LEN, format="coo", density=DENSITY, random_state=rng) * 10 |
| 27 | + s_sps.sum_duplicates() |
| 28 | + |
| 29 | + # Finch |
| 30 | + with sparse.Backend(backend=sparse.BackendType.Finch): |
| 31 | + s = sparse.asarray(s_sps) |
| 32 | + a = sparse.asarray(np.array(a_sps, order="F")) |
| 33 | + b = sparse.asarray(np.array(b_sps, order="C")) |
| 34 | + |
| 35 | + @sparse.compiled |
| 36 | + def sddmm_finch(s, a, b): |
| 37 | + return sparse.sum( |
| 38 | + s[:, :, None] * (a[:, None, :] * sparse.permute_dims(b, (1, 0))[None, :, :]), |
| 39 | + axis=-1, |
| 40 | + ) |
| 41 | + |
| 42 | + # Compile |
| 43 | + result_finch = sddmm_finch(s, a, b) |
| 44 | + assert sparse.nonzero(result_finch)[0].size > 5 |
| 45 | + # Benchmark |
| 46 | + benchmark(sddmm_finch, info="Finch", args=[s, a, b]) |
| 47 | + |
| 48 | + # Numba |
| 49 | + with sparse.Backend(backend=sparse.BackendType.Numba): |
| 50 | + s = sparse.asarray(s_sps) |
| 51 | + a = a_sps |
| 52 | + b = b_sps |
| 53 | + |
| 54 | + def sddmm_numba(s, a, b): |
| 55 | + return s * (a @ b) |
| 56 | + |
| 57 | + # Compile |
| 58 | + result_numba = sddmm_numba(s, a, b) |
| 59 | + assert sparse.nonzero(result_numba)[0].size > 5 |
| 60 | + # Benchmark |
| 61 | + benchmark(sddmm_numba, info="Numba", args=[s, a, b]) |
| 62 | + |
| 63 | + # SciPy |
| 64 | + def sddmm_scipy(s, a, b): |
| 65 | + return s.multiply(a @ b) |
| 66 | + |
| 67 | + s = s_sps.asformat("csr") |
| 68 | + a = a_sps |
| 69 | + b = b_sps |
| 70 | + |
| 71 | + result_scipy = sddmm_scipy(s, a, b) |
| 72 | + # Benchmark |
| 73 | + benchmark(sddmm_scipy, info="SciPy", args=[s, a, b]) |
| 74 | + |
| 75 | + np.testing.assert_allclose(result_numba.todense(), result_scipy.toarray()) |
| 76 | + np.testing.assert_allclose(result_finch.todense(), result_numba.todense()) |
| 77 | + np.testing.assert_allclose(result_finch.todense(), result_scipy.toarray()) |
0 commit comments