|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <gtest/gtest.h> |
| 10 | + |
| 11 | +#include <ATen/ATen.h> |
| 12 | + |
| 13 | +#include <executorch/backends/vulkan/runtime/api/api.h> |
| 14 | +#include <executorch/backends/vulkan/runtime/graph/ComputeGraph.h> |
| 15 | +#include <executorch/backends/vulkan/runtime/graph/ops/OperatorRegistry.h> |
| 16 | + |
| 17 | +#include <executorch/extension/aten_util/make_aten_functor_from_et_functor.h> |
| 18 | +#include <executorch/extension/kernel_util/make_boxed_from_unboxed_functor.h> |
| 19 | + |
| 20 | +#include "test_utils.h" |
| 21 | + |
| 22 | +#include <cassert> |
| 23 | +#include <iostream> |
| 24 | + |
| 25 | +namespace torch { |
| 26 | +namespace executor { |
| 27 | +namespace native { |
| 28 | + |
| 29 | +// Forward declarations of the functions we're testing |
| 30 | +Tensor& quantize_per_tensor_out( |
| 31 | + const Tensor& input, |
| 32 | + double scale, |
| 33 | + int64_t zero_point, |
| 34 | + int64_t quant_min, |
| 35 | + int64_t quant_max, |
| 36 | + ScalarType dtype, |
| 37 | + Tensor& out); |
| 38 | + |
| 39 | +Tensor& quantize_per_token_out( |
| 40 | + const Tensor& input, |
| 41 | + const Tensor& scale, |
| 42 | + const Tensor& zero_point, |
| 43 | + int64_t quant_min, |
| 44 | + int64_t quant_max, |
| 45 | + ScalarType dtype, |
| 46 | + Tensor& out); |
| 47 | + |
| 48 | +// Wrapper function for quantize_per_tensor_out without context |
| 49 | +Tensor& quantize_per_tensor_out_no_context( |
| 50 | + const Tensor& input, |
| 51 | + double scale, |
| 52 | + int64_t zero_point, |
| 53 | + int64_t quant_min, |
| 54 | + int64_t quant_max, |
| 55 | + ScalarType dtype, |
| 56 | + Tensor& out) { |
| 57 | + return torch::executor::native::quantize_per_tensor_out( |
| 58 | + input, scale, zero_point, quant_min, quant_max, dtype, out); |
| 59 | +} |
| 60 | + |
| 61 | +// Wrapper function for quantize_per_token_out without context |
| 62 | +Tensor& quantize_per_token_out_no_context( |
| 63 | + const Tensor& input, |
| 64 | + const Tensor& scale, |
| 65 | + const Tensor& zero_point, |
| 66 | + int64_t quant_min, |
| 67 | + int64_t quant_max, |
| 68 | + ScalarType dtype, |
| 69 | + Tensor& out) { |
| 70 | + return torch::executor::native::quantize_per_token_out( |
| 71 | + input, scale, zero_point, quant_min, quant_max, dtype, out); |
| 72 | +} |
| 73 | + |
| 74 | +// ATen wrapper for quantize_per_tensor |
| 75 | +at::Tensor quantize_per_tensor_aten( |
| 76 | + const at::Tensor& input, |
| 77 | + double scale, |
| 78 | + int64_t zero_point, |
| 79 | + int64_t quant_min, |
| 80 | + int64_t quant_max, |
| 81 | + at::ScalarType dtype) { |
| 82 | + auto out = at::empty_like(input, dtype); |
| 83 | + ScalarType et_dtype = at_scalartype_to_et_scalartype(dtype); |
| 84 | + |
| 85 | + WRAP_TO_ATEN(quantize_per_tensor_out_no_context, 6) |
| 86 | + (input, scale, zero_point, quant_min, quant_max, et_dtype, out); |
| 87 | + return out; |
| 88 | +} |
| 89 | + |
| 90 | +// ATen wrapper for quantize_per_token |
| 91 | +at::Tensor quantize_per_token_aten( |
| 92 | + const at::Tensor& input, |
| 93 | + const at::Tensor& scale, |
| 94 | + const at::Tensor& zero_point, |
| 95 | + int64_t quant_min, |
| 96 | + int64_t quant_max, |
| 97 | + at::ScalarType dtype) { |
| 98 | + auto out = at::empty_like(input, dtype); |
| 99 | + ScalarType et_dtype = at_scalartype_to_et_scalartype(dtype); |
| 100 | + |
| 101 | + WRAP_TO_ATEN(quantize_per_token_out_no_context, 6) |
| 102 | + (input, scale, zero_point, quant_min, quant_max, et_dtype, out); |
| 103 | + return out; |
| 104 | +} |
| 105 | + |
| 106 | +} // namespace native |
| 107 | +} // namespace executor |
| 108 | +} // namespace torch |
| 109 | + |
| 110 | +void check_quantize_args( |
| 111 | + int64_t quant_min, |
| 112 | + int64_t quant_max, |
| 113 | + c10::ScalarType out_dtype) { |
| 114 | + using namespace vkcompute; |
| 115 | + int32_t quant_min_lower_bound = 0, quant_max_upper_bound = 0; |
| 116 | + switch (out_dtype) { |
| 117 | + case c10::kByte: |
| 118 | + quant_min_lower_bound = |
| 119 | + static_cast<int32_t>(std::numeric_limits<uint8_t>::min()); |
| 120 | + quant_max_upper_bound = |
| 121 | + static_cast<int32_t>(std::numeric_limits<uint8_t>::max()); |
| 122 | + break; |
| 123 | + case c10::kChar: |
| 124 | + quant_min_lower_bound = |
| 125 | + static_cast<int32_t>(std::numeric_limits<int8_t>::min()); |
| 126 | + quant_max_upper_bound = |
| 127 | + static_cast<int32_t>(std::numeric_limits<int8_t>::max()); |
| 128 | + break; |
| 129 | + case c10::kBits16: |
| 130 | + case c10::kUInt16: |
| 131 | + quant_min_lower_bound = std::numeric_limits<uint16_t>::min(); |
| 132 | + quant_max_upper_bound = std::numeric_limits<uint16_t>::max(); |
| 133 | + break; |
| 134 | + case c10::kShort: |
| 135 | + quant_min_lower_bound = std::numeric_limits<int16_t>::min(); |
| 136 | + quant_max_upper_bound = std::numeric_limits<int16_t>::max(); |
| 137 | + break; |
| 138 | + case c10::kInt: |
| 139 | + quant_min_lower_bound = std::numeric_limits<int32_t>::min(); |
| 140 | + quant_max_upper_bound = std::numeric_limits<int32_t>::max(); |
| 141 | + break; |
| 142 | + default: |
| 143 | + VK_CHECK_COND(false, "Unsupported dtype: ", scalar_type_name(out_dtype)); |
| 144 | + } |
| 145 | + VK_CHECK_COND( |
| 146 | + quant_min >= quant_min_lower_bound, |
| 147 | + "quant_min out of bound for dtype, expected quant_min_lower_bound: ", |
| 148 | + quant_min_lower_bound, |
| 149 | + " actual quant_min: ", |
| 150 | + quant_min); |
| 151 | + |
| 152 | + VK_CHECK_COND( |
| 153 | + quant_max <= quant_max_upper_bound, |
| 154 | + "quant_max out of bound for dtype, expected quant_max_upper_bound: ", |
| 155 | + quant_max_upper_bound, |
| 156 | + " actual quant_max: ", |
| 157 | + quant_max); |
| 158 | +} |
0 commit comments