Skip to content

Commit c14ee65

Browse files
committed
refactor diloco test
Summary: - move the training loop to a separate file - convert it into a class so that methods can be overridden without having to duplicate code
1 parent dd45c41 commit c14ee65

File tree

2 files changed

+315
-179
lines changed

2 files changed

+315
-179
lines changed

torchft/diloco_trainer.py

Lines changed: 310 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,310 @@
1+
import copy
2+
import logging
3+
import os
4+
from contextlib import ExitStack
5+
from datetime import timedelta
6+
from typing import Any, Dict, List, cast
7+
8+
import torch
9+
from torch import nn
10+
from torch.distributed.tensor import DTensor
11+
12+
from torchft.device_mesh import ManagedDeviceMesh, ft_init_device_mesh
13+
from torchft.local_sgd import DiLoCo
14+
from torchft.manager import Manager
15+
from torchft.manager_integ_test import MyModel, Runner
16+
from torchft.process_group import (
17+
FakeProcessGroupWrapper,
18+
ProcessGroupBabyNCCL,
19+
ProcessGroupGloo,
20+
)
21+
22+
logger: logging.Logger = logging.getLogger(__name__)
23+
24+
25+
class MultiModel(torch.nn.Module):
26+
def __init__(self, in_dim: int = 3, out_dim: int = 4, n_layers: int = 1) -> None:
27+
super().__init__()
28+
self.layers = torch.nn.ModuleList()
29+
30+
def get_rand_inputs(
31+
self, batch_size: int, device: torch.device = torch.device("cpu")
32+
) -> torch.Tensor:
33+
raise
34+
35+
def get_rand_labels(
36+
self, batch_size: int, device: torch.device = torch.device("cpu")
37+
) -> torch.Tensor:
38+
raise
39+
40+
41+
class MultiMyModel(MultiModel):
42+
def __init__(self, in_dim: int = 3, out_dim: int = 4, n_layers: int = 1) -> None:
43+
super().__init__()
44+
self.in_dim = in_dim
45+
46+
for _ in range(n_layers):
47+
self.layers.append(MyModel(in_dim, out_dim))
48+
in_dim, out_dim = out_dim, in_dim
49+
50+
self.out_dim = in_dim
51+
52+
def forward(self, x: torch.Tensor) -> torch.Tensor:
53+
for layer in self.layers:
54+
x = layer(x)
55+
return x
56+
57+
def get_rand_inputs(
58+
self, batch_size: int, device: torch.device = torch.device("cpu")
59+
) -> torch.Tensor:
60+
return torch.rand(batch_size, self.in_dim, device=device)
61+
62+
def get_rand_labels(
63+
self, batch_size: int, device: torch.device = torch.device("cpu")
64+
) -> torch.Tensor:
65+
return torch.randint(self.out_dim, (batch_size,), device=device)
66+
67+
68+
class DiLoCoTrainer:
69+
"""
70+
A class that encapsulates the DiLoCo training process.
71+
"""
72+
73+
def __init__(
74+
self,
75+
rank: int,
76+
store_port: int,
77+
device: torch.device,
78+
runner: Runner,
79+
model_state_dict: dict[str, Any],
80+
n_fragments: int,
81+
diloco_args: dict[str, Any],
82+
) -> None:
83+
"""
84+
Initialize the DiLoCoTrainer.
85+
86+
Args:
87+
rank: The rank of the current process.
88+
store_port: The port for the store.
89+
device: The device to use for training.
90+
runner: The runner instance.
91+
train_loop_args: Additional arguments for the training loop.
92+
"""
93+
self.rank: int = rank
94+
self.store_port: int = store_port
95+
self.device: torch.device = device
96+
self.runner: Runner = runner
97+
98+
# Extract arguments from train_loop_args
99+
self.model_state_dict: Dict[str, Any] = model_state_dict
100+
self.n_fragments: int = n_fragments
101+
self.diloco_args: dict[str, Any] = diloco_args
102+
103+
# Initialize components
104+
self.model: MultiModel = self.setup_model()
105+
self.inner_optimizer: torch.optim.Optimizer = self.setup_inner_optimizer()
106+
self.outer_optimizers: list[torch.optim.Optimizer] = (
107+
self.setup_outer_optimizers()
108+
)
109+
110+
self.pg: FakeProcessGroupWrapper = self.setup_pg()
111+
# Set up the process group for the event injector
112+
self.runner.event_injector.set_pg(self.pg)
113+
114+
self.manager: Manager = self.setup_manager()
115+
116+
self.ft_device_mesh: None | ManagedDeviceMesh = None
117+
self.setup_distributed()
118+
119+
self.criterion: nn.CrossEntropyLoss = nn.CrossEntropyLoss()
120+
121+
self.diloco: DiLoCo | None = None
122+
123+
def setup_model(self) -> MultiModel:
124+
"""Set up the model and move it to the device."""
125+
model = MultiMyModel(2, 3, self.n_fragments)
126+
model.load_state_dict(self.model_state_dict)
127+
model.to(self.device)
128+
return model
129+
130+
def setup_inner_optimizer(self) -> torch.optim.Optimizer:
131+
"""Set up the inner optimizer."""
132+
return torch.optim.AdamW(
133+
self.model.parameters(), lr=4e-4, weight_decay=0.1, betas=(0.9, 0.95)
134+
)
135+
136+
def setup_outer_optimizers(self) -> list[torch.optim.Optimizer]:
137+
"""Set up outer optimizers."""
138+
# Setup inner optimizer
139+
# Create one outer optimizer per fragment
140+
outer_optimizers = []
141+
for _, layers in enumerate(self.model.layers):
142+
outer_optimizers.append(
143+
torch.optim.SGD(
144+
layers.parameters(), lr=0.7, momentum=0.9, nesterov=True
145+
)
146+
)
147+
return outer_optimizers
148+
149+
def setup_pg(self) -> FakeProcessGroupWrapper:
150+
if self.device.type == "cuda":
151+
return FakeProcessGroupWrapper(ProcessGroupBabyNCCL())
152+
else:
153+
return FakeProcessGroupWrapper(
154+
ProcessGroupGloo(timeout=timedelta(seconds=10))
155+
)
156+
157+
def setup_manager(self) -> Manager:
158+
"""Set up the process group and manager."""
159+
print(
160+
f"worker {self.runner.replica_id=} {self.rank=} {self.runner.world_size=} starting"
161+
)
162+
163+
# Create manager with all arguments passed directly
164+
return Manager(
165+
pg=self.pg,
166+
min_replica_size=2,
167+
use_async_quorum=False,
168+
load_state_dict=self.load_state_dict,
169+
state_dict=self.state_dict,
170+
replica_id=str(self.runner.replica_id),
171+
store_addr="localhost",
172+
store_port=self.store_port,
173+
rank=self.rank,
174+
world_size=self.runner.world_size,
175+
lighthouse_addr=self.runner.lighthouse_address,
176+
port=19530 + self.runner.replica_id,
177+
connect_timeout=timedelta(seconds=10),
178+
quorum_timeout=timedelta(seconds=10),
179+
timeout=timedelta(seconds=10),
180+
**self.runner.manager_args, # type: ignore
181+
)
182+
183+
def setup_distributed(self) -> None:
184+
"""Set up distributed training."""
185+
# Initialize default group for device mesh to work
186+
if not torch.distributed.is_initialized():
187+
# TODO: remove this try-except once pytorch is updated to 2.8.0 and can use localhost:0
188+
try:
189+
torch.distributed.init_process_group(
190+
init_method="tcp://localhost:0",
191+
rank=self.rank,
192+
world_size=self.runner.world_size,
193+
)
194+
except ValueError:
195+
os.environ["MASTER_ADDR"] = "localhost"
196+
os.environ["MASTER_PORT"] = "0"
197+
os.environ["WORLD_SIZE"] = str(self.runner.world_size)
198+
os.environ["RANK"] = str(self.rank)
199+
200+
self.ft_device_mesh = ft_init_device_mesh(
201+
device_type=self.device.type,
202+
mesh_shape=(self.runner.world_size, 1),
203+
mesh_dim_names=("replicate", "none"),
204+
replicate_dim=0,
205+
manager=self.manager,
206+
)
207+
208+
# Convert model parameters to DTensor
209+
for layer in self.model.layers:
210+
if isinstance(layer, nn.Linear):
211+
for param in layer.parameters():
212+
param = DTensor.from_local(
213+
param,
214+
device_mesh=self.ft_device_mesh,
215+
)
216+
217+
def load_state_dict(self, state_dict: Dict[str, Dict[str, object]]) -> None:
218+
"""
219+
Load the state dictionary.
220+
221+
Args:
222+
state_dict: The state dictionary to load.
223+
"""
224+
assert self.diloco is not None
225+
226+
self.model.load_state_dict(state_dict["model"])
227+
self.model.to(self.device)
228+
229+
# Load original parameters for each fragment
230+
for i, fragment in enumerate(cast(DiLoCo, self.diloco)._fragments):
231+
fragment.original_parameters = cast(
232+
Dict[str, torch.Tensor], state_dict["original_params"][f"{i}"]
233+
)
234+
235+
for fragment in cast(DiLoCo, self.diloco)._fragments:
236+
for name in fragment.original_parameters.keys():
237+
fragment.original_parameters[name] = fragment.original_parameters[
238+
name
239+
].to(self.device)
240+
241+
self.inner_optimizer.load_state_dict(state_dict["inner_optim"])
242+
for i, optimizer in enumerate(self.outer_optimizers):
243+
optimizer.load_state_dict(
244+
cast(dict[str, torch.Tensor], state_dict[f"outer_optim"][f"{i}"])
245+
)
246+
247+
def state_dict(self) -> Dict[str, Dict[str, object]]:
248+
"""
249+
Get the state dictionary.
250+
251+
Returns:
252+
The state dictionary.
253+
"""
254+
assert self.diloco is not None
255+
256+
return {
257+
"model": self.model.state_dict(),
258+
"original_params": {
259+
f"{i}": fragment.original_parameters
260+
for i, fragment in enumerate(cast(DiLoCo, self.diloco)._fragments)
261+
},
262+
"inner_optim": self.inner_optimizer.state_dict(),
263+
"outer_optim": {
264+
f"{i}": optimizer.state_dict()
265+
for i, optimizer in enumerate(self.outer_optimizers)
266+
},
267+
}
268+
269+
def train_loop(self) -> dict[str, Any]:
270+
"""Run the training loop."""
271+
# Ensure sync_every is set in diloco_args
272+
all_state_dicts = {}
273+
274+
if "sync_every" not in self.diloco_args:
275+
self.diloco_args["sync_every"] = 2
276+
277+
with DiLoCo(
278+
self.manager,
279+
[layer for layer in self.model.layers],
280+
self.inner_optimizer,
281+
self.outer_optimizers,
282+
backup_device=self.device,
283+
**self.diloco_args,
284+
) as self.diloco:
285+
while True:
286+
self.runner.event_injector.check(self.rank, self.manager.current_step())
287+
288+
manager_curr_step = self.manager.current_step()
289+
if manager_curr_step not in all_state_dicts:
290+
# Store the manager state dict, converting to the right type
291+
all_state_dicts[manager_curr_step] = copy.deepcopy(
292+
self.manager._manager_state_dict()
293+
)
294+
295+
batch_size = 1
296+
inputs = self.model.get_rand_inputs(batch_size, device=self.device)
297+
labels = self.model.get_rand_labels(batch_size, device=self.device)
298+
299+
out = self.model(inputs)
300+
loss = self.criterion(out, labels)
301+
302+
self.inner_optimizer.zero_grad()
303+
loss.backward()
304+
self.inner_optimizer.step()
305+
306+
# after 4 model updates then break
307+
if self.manager.current_step() >= 4:
308+
break
309+
310+
return all_state_dicts

0 commit comments

Comments
 (0)