|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import json |
| 8 | +import logging |
| 9 | +import os |
| 10 | +from typing import Dict, Optional, Set, Tuple |
| 11 | + |
| 12 | +import torch |
| 13 | +from safetensors import safe_open |
| 14 | + |
| 15 | +from transformers.utils import cached_file |
| 16 | + |
| 17 | + |
| 18 | +logger = logging.getLogger(__name__) |
| 19 | + |
| 20 | +_DEFAULT_SAFETENSOR_FILE_NAME = "model.safetensors.index.json" |
| 21 | + |
| 22 | + |
| 23 | +def read_weights_from_json(file_path: str) -> Optional[Dict[str, str]]: |
| 24 | + try: |
| 25 | + with open(file_path, "r") as file: |
| 26 | + data = json.load(file) |
| 27 | + |
| 28 | + if "weight_map" in data and isinstance(data["weight_map"], dict): |
| 29 | + return data["weight_map"] |
| 30 | + else: |
| 31 | + logger.info("No 'weight_map' dictionary found in the JSON file.") |
| 32 | + return None |
| 33 | + except (json.JSONDecodeError, Exception) as e: |
| 34 | + logger.info(f"An error occurred while reading the JSON file: {str(e)}") |
| 35 | + return None |
| 36 | + |
| 37 | + |
| 38 | +def get_hf_weight_map_and_path( |
| 39 | + model_id: str, |
| 40 | +) -> Tuple[Dict[str, str], str]: |
| 41 | + """Get the weight map for a given HF model id and also the cache path for loading the weights""" |
| 42 | + try: |
| 43 | + index_file = cached_file(model_id, _DEFAULT_SAFETENSOR_FILE_NAME) |
| 44 | + except Exception as e: |
| 45 | + logger.error( |
| 46 | + f"Model `{model_id}` not found in HF cache. " |
| 47 | + f"You can download the model using `python download.py {model_id}" |
| 48 | + ) |
| 49 | + raise e |
| 50 | + |
| 51 | + weight_map = read_weights_from_json(index_file) |
| 52 | + weight_path = os.path.dirname(index_file) |
| 53 | + logger.info(f"Loading weights from: {weight_path}") |
| 54 | + return weight_map, weight_path |
| 55 | + |
| 56 | + |
| 57 | +def get_needed_files( |
| 58 | + state_dict: Dict[str, torch.Tensor], weight_map: Dict[str, str] |
| 59 | +) -> Set[str]: |
| 60 | + needed_files = set() |
| 61 | + for param in state_dict.keys(): |
| 62 | + file = weight_map.get(param) |
| 63 | + if file: |
| 64 | + needed_files.add(file) |
| 65 | + elif param.endswith("weight"): |
| 66 | + raise ValueError( |
| 67 | + f"Parameter {param} not found in weight map, please check..." |
| 68 | + ) |
| 69 | + logger.info(f"Needed files: {needed_files}") |
| 70 | + return needed_files |
| 71 | + |
| 72 | + |
| 73 | +def load_safetensor_file( |
| 74 | + full_path: str, device: torch.device |
| 75 | +) -> Dict[str, torch.Tensor]: |
| 76 | + tensors = {} |
| 77 | + with safe_open(full_path, framework="pt", device=device) as f: |
| 78 | + for k in f.keys(): |
| 79 | + tensors[k] = f.get_tensor(k) |
| 80 | + logger.info(f"Loaded {len(tensors)} tensors from {full_path}") |
| 81 | + return tensors |
| 82 | + |
| 83 | + |
| 84 | +def load_safetensor_weights( |
| 85 | + model: torch.nn.Module, |
| 86 | + weight_map: Dict[str, str], |
| 87 | + file_location: str, |
| 88 | + device: torch.device, |
| 89 | +): |
| 90 | + """ |
| 91 | + Load safetensor weights into a `nn.Module`. |
| 92 | +
|
| 93 | + Args: |
| 94 | + model (Module): The PyTorch module to load weights into. It may be a |
| 95 | + model chunk or a full model. |
| 96 | + weight_map (Dict[str, str]): Mapping of model parameters to file names. |
| 97 | + file_location (str): Directory containing the weight files. |
| 98 | + device (torch.device): The device to load tensors onto. |
| 99 | + """ |
| 100 | + model_state_dict = model.state_dict() |
| 101 | + needed_files = get_needed_files(model_state_dict, weight_map) |
| 102 | + updated_states: Set[str] = set() |
| 103 | + |
| 104 | + for file in needed_files: |
| 105 | + full_path = os.path.join(file_location, file) |
| 106 | + try: |
| 107 | + checkpoint = load_safetensor_file(full_path, "cpu") |
| 108 | + except FileNotFoundError: |
| 109 | + logger.error(f"File not found: {full_path}") |
| 110 | + except Exception as e: |
| 111 | + logger.error(f"Error during checkpoint processing of {full_path}: {str(e)}") |
| 112 | + |
| 113 | + matched_keys = set(checkpoint.keys()) & set(model_state_dict.keys()) |
| 114 | + for key in matched_keys: |
| 115 | + # Check shape |
| 116 | + if model_state_dict[key].shape != checkpoint[key].shape: |
| 117 | + raise ValueError( |
| 118 | + f"Shape mismatch for {key}: " |
| 119 | + f"model needs {model_state_dict[key].shape}, but " |
| 120 | + f"checkpoint has {checkpoint[key].shape}" |
| 121 | + ) |
| 122 | + model_state_dict[key] = checkpoint[key].to(device) |
| 123 | + |
| 124 | + updated_states.update(matched_keys) |
| 125 | + |
| 126 | + missing_keys = set(model_state_dict.keys()) - updated_states |
| 127 | + if missing_keys: |
| 128 | + raise RuntimeError( |
| 129 | + f"Partially updated state dict. Missing parameters: {missing_keys}" |
| 130 | + ) |
| 131 | + |
| 132 | + model.load_state_dict(model_state_dict, strict=False, assign=True) |
| 133 | + logger.info(f"Successfully loaded {len(updated_states)} weights into model") |
| 134 | + |
| 135 | + |
| 136 | +def load_weights_from_hf( |
| 137 | + model: torch.nn.Module, |
| 138 | + distribution: str, |
| 139 | + device: torch.device, |
| 140 | +): |
| 141 | + """ |
| 142 | + Load the weights from Hugging Face format (index file + multiple safetensor |
| 143 | + files), and fill into `model`. Model config is needed b/c we permute |
| 144 | + wq and wk weights based on attn heads. |
| 145 | + """ |
| 146 | + |
| 147 | + weight_map, weight_path = get_hf_weight_map_and_path(distribution) |
| 148 | + |
| 149 | + load_safetensor_weights( |
| 150 | + model, |
| 151 | + weight_map, |
| 152 | + weight_path, |
| 153 | + device, |
| 154 | + ) |
0 commit comments