forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmilvus_ann_search.py
91 lines (80 loc) Β· 3.49 KB
/
milvus_ann_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import numpy as np
from config import collection_name, embedding_name, partition_tag
from milvus_util import RecallByMilvus, VecToMilvus, text_max_len
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_path", default="milvus/milvus_data.csv", type=str, required=True, help="The data for vector extraction."
)
parser.add_argument(
"--embedding_path", default="corpus_embedding.npy", type=str, required=True, help="The vector path for data."
)
parser.add_argument("--index", default=0, type=int, help="index of the vector for search")
parser.add_argument("--insert", action="store_true", help="whether to insert data")
parser.add_argument("--search", action="store_true", help="whether to search data")
parser.add_argument("--batch_size", default=100000, type=int, help="number of examples to insert each time")
args = parser.parse_args()
def read_text(file_path):
file = open(file_path)
id2corpus = []
for idx, data in enumerate(file.readlines()):
id2corpus.append(data.strip())
return id2corpus
def milvus_data_insert(data_path, embedding_path, batch_size):
corpus_list = read_text(data_path)
embeddings = np.load(embedding_path)
embedding_ids = [i for i in range(embeddings.shape[0])]
client = VecToMilvus()
client.drop_collection(collection_name)
data_size = len(embedding_ids)
for i in tqdm(range(0, data_size, batch_size)):
cur_end = i + batch_size
if cur_end > data_size:
cur_end = data_size
batch_emb = embeddings[np.arange(i, cur_end)]
entities = [
[j for j in range(i, cur_end, 1)],
[corpus_list[j][: text_max_len - 1] for j in range(i, cur_end, 1)],
batch_emb, # field embeddings, supports numpy.ndarray and list
]
client.insert(
collection_name=collection_name, entities=entities, index_name=embedding_name, partition_tag=partition_tag
)
def milvus_data_recall(embedding_path, index):
embeddings = np.load(embedding_path)
embedding_ids = [i for i in range(embeddings.shape[0])]
recall_client = RecallByMilvus()
if index > len(embedding_ids):
print("Index should not be larger than embedding size")
return
embeddings = embeddings[np.arange(index, index + 1)]
time_start = time.time()
result = recall_client.search(
embeddings, embedding_name, collection_name, partition_names=[partition_tag], output_fields=["pk", "text"]
)
time_end = time.time()
sum_t = time_end - time_start
print("time cost", sum_t, "s")
for hits in result:
for hit in hits:
print(f"hit: {hit}, text field: {hit.entity.get('text')}")
if __name__ == "__main__":
if args.insert:
milvus_data_insert(args.data_path, args.embedding_path, args.batch_size)
if args.search:
milvus_data_recall(args.embedding_path, args.index)