|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "markdown",
|
5 |
| - "id": "f2e9ace3", |
| 5 | + "id": "bd16181d", |
6 | 6 | "metadata": {
|
7 | 7 | "cq.autogen": "title_cell"
|
8 | 8 | },
|
|
13 | 13 | {
|
14 | 14 | "cell_type": "code",
|
15 | 15 | "execution_count": null,
|
16 |
| - "id": "84523966", |
| 16 | + "id": "c6216556", |
17 | 17 | "metadata": {
|
18 | 18 | "cq.autogen": "top_imports"
|
19 | 19 | },
|
|
30 | 30 | },
|
31 | 31 | {
|
32 | 32 | "cell_type": "markdown",
|
33 |
| - "id": "d77b58bc", |
| 33 | + "id": "667e99e4", |
34 | 34 | "metadata": {
|
35 | 35 | "cq.autogen": "GF2Multiplication.bloq_doc.md"
|
36 | 36 | },
|
|
72 | 72 | {
|
73 | 73 | "cell_type": "code",
|
74 | 74 | "execution_count": null,
|
75 |
| - "id": "40013f0c", |
| 75 | + "id": "e7be0a06", |
76 | 76 | "metadata": {
|
77 | 77 | "cq.autogen": "GF2Multiplication.bloq_doc.py"
|
78 | 78 | },
|
|
83 | 83 | },
|
84 | 84 | {
|
85 | 85 | "cell_type": "markdown",
|
86 |
| - "id": "c5bcc7f0", |
| 86 | + "id": "eda29d2c", |
87 | 87 | "metadata": {
|
88 | 88 | "cq.autogen": "GF2Multiplication.example_instances.md"
|
89 | 89 | },
|
|
94 | 94 | {
|
95 | 95 | "cell_type": "code",
|
96 | 96 | "execution_count": null,
|
97 |
| - "id": "75114297", |
| 97 | + "id": "19a69ab5", |
98 | 98 | "metadata": {
|
99 | 99 | "cq.autogen": "GF2Multiplication.gf16_multiplication"
|
100 | 100 | },
|
|
106 | 106 | {
|
107 | 107 | "cell_type": "code",
|
108 | 108 | "execution_count": null,
|
109 |
| - "id": "7bdc2588", |
| 109 | + "id": "a5d9f3a7", |
110 | 110 | "metadata": {
|
111 | 111 | "cq.autogen": "GF2Multiplication.gf2_multiplication_symbolic"
|
112 | 112 | },
|
|
120 | 120 | },
|
121 | 121 | {
|
122 | 122 | "cell_type": "markdown",
|
123 |
| - "id": "9866335a", |
| 123 | + "id": "22e6b63a", |
124 | 124 | "metadata": {
|
125 | 125 | "cq.autogen": "GF2Multiplication.graphical_signature.md"
|
126 | 126 | },
|
|
131 | 131 | {
|
132 | 132 | "cell_type": "code",
|
133 | 133 | "execution_count": null,
|
134 |
| - "id": "f09a13f8", |
| 134 | + "id": "345d09a7", |
135 | 135 | "metadata": {
|
136 | 136 | "cq.autogen": "GF2Multiplication.graphical_signature.py"
|
137 | 137 | },
|
|
144 | 144 | },
|
145 | 145 | {
|
146 | 146 | "cell_type": "markdown",
|
147 |
| - "id": "b26814e0", |
| 147 | + "id": "94ab395f", |
148 | 148 | "metadata": {
|
149 | 149 | "cq.autogen": "GF2Multiplication.call_graph.md"
|
150 | 150 | },
|
|
155 | 155 | {
|
156 | 156 | "cell_type": "code",
|
157 | 157 | "execution_count": null,
|
158 |
| - "id": "7219fea5", |
| 158 | + "id": "7701f35c", |
159 | 159 | "metadata": {
|
160 | 160 | "cq.autogen": "GF2Multiplication.call_graph.py"
|
161 | 161 | },
|
|
169 | 169 | },
|
170 | 170 | {
|
171 | 171 | "cell_type": "markdown",
|
172 |
| - "id": "a9729be2", |
| 172 | + "id": "410bdd3b", |
173 | 173 | "metadata": {
|
174 |
| - "cq.autogen": "MultiplyPolyByConstantMod.bloq_doc.md" |
| 174 | + "cq.autogen": "GF2MultiplyByConstantMod.bloq_doc.md" |
175 | 175 | },
|
176 | 176 | "source": [
|
177 |
| - "## `MultiplyPolyByConstantMod`\n", |
178 |
| - "Multiply a polynomial by $f(x)$ modulu $m(x)$. Both $f(x)$ and $m(x)$ are constants.\n", |
| 177 | + "## `GF2MultiplyByConstantMod`\n", |
| 178 | + "Multiply by constant $f(x)$ modulu $m(x)$. Both $f(x)$ and $m(x)$ are constants.\n", |
179 | 179 | "\n",
|
180 | 180 | "#### Parameters\n",
|
181 |
| - " - `f_x`: The polynomial to mulitply with, given either a galois.Poly or as a sequence degrees.\n", |
182 |
| - " - `m_x`: The modulus polynomial, given either a galois.Poly or as a sequence degrees. \n", |
| 181 | + " - `const`: The multiplication constant which is an element of the given field.\n", |
| 182 | + " - `galois_field`: The galois field that defines the arithmetics. \n", |
183 | 183 | "\n",
|
184 | 184 | "#### Registers\n",
|
185 | 185 | " - `g`: The polynomial coefficients (in GF(2)). \n",
|
|
191 | 191 | {
|
192 | 192 | "cell_type": "code",
|
193 | 193 | "execution_count": null,
|
194 |
| - "id": "a25c2e49", |
| 194 | + "id": "fcca1ecd", |
195 | 195 | "metadata": {
|
196 |
| - "cq.autogen": "MultiplyPolyByConstantMod.bloq_doc.py" |
| 196 | + "cq.autogen": "GF2MultiplyByConstantMod.bloq_doc.py" |
197 | 197 | },
|
198 | 198 | "outputs": [],
|
199 | 199 | "source": [
|
200 |
| - "from qualtran.bloqs.gf_arithmetic import MultiplyPolyByConstantMod" |
| 200 | + "from qualtran.bloqs.gf_arithmetic import GF2MultiplyByConstantMod" |
201 | 201 | ]
|
202 | 202 | },
|
203 | 203 | {
|
204 | 204 | "cell_type": "markdown",
|
205 |
| - "id": "3690dcdb", |
| 205 | + "id": "f17b748f", |
206 | 206 | "metadata": {
|
207 |
| - "cq.autogen": "MultiplyPolyByConstantMod.example_instances.md" |
| 207 | + "cq.autogen": "GF2MultiplyByConstantMod.example_instances.md" |
208 | 208 | },
|
209 | 209 | "source": [
|
210 | 210 | "### Example Instances"
|
|
213 | 213 | {
|
214 | 214 | "cell_type": "code",
|
215 | 215 | "execution_count": null,
|
216 |
| - "id": "dffa638f", |
| 216 | + "id": "b34f2d09", |
217 | 217 | "metadata": {
|
218 |
| - "cq.autogen": "MultiplyPolyByConstantMod.gf2_multiply_by_constant_modulu" |
| 218 | + "cq.autogen": "GF2MultiplyByConstantMod.gf2_multiply_by_constant_modulu" |
| 219 | + }, |
| 220 | + "outputs": [], |
| 221 | + "source": [ |
| 222 | + "import galois\n", |
| 223 | + "\n", |
| 224 | + "mx = galois.Poly.Degrees([0, 1, 3]) # x^3 + x + 1\n", |
| 225 | + "gf = galois.GF(2, 3, irreducible_poly=mx)\n", |
| 226 | + "const = gf(5) # x^2 + 1\n", |
| 227 | + "gf2_multiply_by_constant_modulu = GF2MultiplyByConstantMod(const, gf)" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "id": "b8488436", |
| 234 | + "metadata": { |
| 235 | + "cq.autogen": "GF2MultiplyByConstantMod.gf2_poly_multiply_by_constant_modulu" |
219 | 236 | },
|
220 | 237 | "outputs": [],
|
221 | 238 | "source": [
|
222 | 239 | "fx = [2, 0] # x^2 + 1\n",
|
223 | 240 | "mx = [0, 1, 3] # x^3 + x + 1\n",
|
224 |
| - "gf2_multiply_by_constant_modulu = MultiplyPolyByConstantMod(fx, mx)" |
| 241 | + "gf2_poly_multiply_by_constant_modulu = GF2MultiplyByConstantMod.from_polynomials(fx, mx)" |
225 | 242 | ]
|
226 | 243 | },
|
227 | 244 | {
|
228 | 245 | "cell_type": "markdown",
|
229 |
| - "id": "e140ad12", |
| 246 | + "id": "0836d017", |
230 | 247 | "metadata": {
|
231 |
| - "cq.autogen": "MultiplyPolyByConstantMod.graphical_signature.md" |
| 248 | + "cq.autogen": "GF2MultiplyByConstantMod.graphical_signature.md" |
232 | 249 | },
|
233 | 250 | "source": [
|
234 | 251 | "#### Graphical Signature"
|
|
237 | 254 | {
|
238 | 255 | "cell_type": "code",
|
239 | 256 | "execution_count": null,
|
240 |
| - "id": "501a0781", |
| 257 | + "id": "46c85d5d", |
241 | 258 | "metadata": {
|
242 |
| - "cq.autogen": "MultiplyPolyByConstantMod.graphical_signature.py" |
| 259 | + "cq.autogen": "GF2MultiplyByConstantMod.graphical_signature.py" |
243 | 260 | },
|
244 | 261 | "outputs": [],
|
245 | 262 | "source": [
|
246 | 263 | "from qualtran.drawing import show_bloqs\n",
|
247 |
| - "show_bloqs([gf2_multiply_by_constant_modulu],\n", |
248 |
| - " ['`gf2_multiply_by_constant_modulu`'])" |
| 264 | + "show_bloqs([gf2_multiply_by_constant_modulu, gf2_poly_multiply_by_constant_modulu],\n", |
| 265 | + " ['`gf2_multiply_by_constant_modulu`', '`gf2_poly_multiply_by_constant_modulu`'])" |
249 | 266 | ]
|
250 | 267 | },
|
251 | 268 | {
|
252 | 269 | "cell_type": "markdown",
|
253 |
| - "id": "292b96b9", |
| 270 | + "id": "fea3aa3d", |
254 | 271 | "metadata": {
|
255 |
| - "cq.autogen": "MultiplyPolyByConstantMod.call_graph.md" |
| 272 | + "cq.autogen": "GF2MultiplyByConstantMod.call_graph.md" |
256 | 273 | },
|
257 | 274 | "source": [
|
258 | 275 | "### Call Graph"
|
|
261 | 278 | {
|
262 | 279 | "cell_type": "code",
|
263 | 280 | "execution_count": null,
|
264 |
| - "id": "fad6337a", |
| 281 | + "id": "a73ee748", |
265 | 282 | "metadata": {
|
266 |
| - "cq.autogen": "MultiplyPolyByConstantMod.call_graph.py" |
| 283 | + "cq.autogen": "GF2MultiplyByConstantMod.call_graph.py" |
267 | 284 | },
|
268 | 285 | "outputs": [],
|
269 | 286 | "source": [
|
|
0 commit comments