|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "0", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import numpy as np" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "1", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "### Implementing [Quartic quantum speedups for planted inference](https://arxiv.org/abs/2406.19378v1)" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "2", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "### Problem Definition" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "id": "3", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "**Definition 2.2 (simplified):**\n", |
| 35 | + "A kXOR instance $\\mathcal{I}$ on $n$ variables in ${0, 1}$ is a collection of $m$ constraints, each of the form\n", |
| 36 | + "$$ x_{c_1} \\oplus x_{c_2} \\oplus ... x_{c_k} = b $$ " |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "4", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "**Notation 2.3**\n", |
| 45 | + "Random Instance: Pick each clause independently:\n", |
| 46 | + "- Pick $C$, a $k$ subset of $[n] = \\{1, ... n\\}$ uniformly at random.\n", |
| 47 | + "- Pick $b \\in {0, 1}$ uniformly at random." |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "id": "5", |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "from qualtran.bloqs.optimization.k_xor_sat import KXorInstance, Constraint\n", |
| 58 | + "\n", |
| 59 | + "n, k = 10, 4\n", |
| 60 | + "cs = (\n", |
| 61 | + " Constraint((0, 1, 2, 3), -1), # read: x_0 ^ x_1 ^ x_2 ^ x_3 = 0\n", |
| 62 | + " Constraint((0, 2, 4, 5), 1),\n", |
| 63 | + " Constraint((0, 3, 4, 5), 1),\n", |
| 64 | + " Constraint((0, 3, 4, 5), 1),\n", |
| 65 | + " Constraint((1, 2, 3, 4), -1),\n", |
| 66 | + " Constraint((1, 3, 4, 5), -1),\n", |
| 67 | + " Constraint((1, 3, 4, 5), -1),\n", |
| 68 | + " Constraint((2, 3, 4, 5), 1),\n", |
| 69 | + ")\n", |
| 70 | + "simple_inst = KXorInstance(n, k, cs)\n", |
| 71 | + "simple_inst" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "id": "6", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "**Notation 2.4 (simplified)** Planted Instance:\n", |
| 80 | + "Given $\\rho \\in [0, 1]$ (the _planted advantage_),\n", |
| 81 | + "\n", |
| 82 | + "first pick a secret assignment $z \\in \\{0, 1\\}^n$.\n", |
| 83 | + "Now pick each clause independently by: \n", |
| 84 | + "- Pick $C$, a $k$ subset of $[n]$ uniformly at random.\n", |
| 85 | + "- Pick noise $\\eta \\in {0, 1}$, s.t. $\\eta = 0$ with probability $(1 + \\rho)/2$\n", |
| 86 | + "- Set $b = C(z) \\oplus \\eta$\n", |
| 87 | + "\n", |
| 88 | + "Note: when $\\rho = 0$, the noise is random, and when $\\rho = 1$, there is no noise." |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "id": "7", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "random_inst = KXorInstance.random_instance(\n", |
| 99 | + " n=10, \n", |
| 100 | + " m=20, \n", |
| 101 | + " k=4,\n", |
| 102 | + " planted_advantage=0.8,\n", |
| 103 | + " rng=np.random.default_rng(42),\n", |
| 104 | + ")\n", |
| 105 | + "random_inst" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "markdown", |
| 110 | + "id": "8", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "## Problem\n", |
| 114 | + "\n", |
| 115 | + "**Problem 2.6 (Planted Noisy kXOR)**\n", |
| 116 | + "Given $\\rho \\in (0, 1)$, and an instance $\\mathcal{I}$ that is promised to be either drawn from the random distribution or planted distribution (with $\\rho$), distinguish which case it is." |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "id": "9", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## Kikuchi Method\n", |
| 125 | + "This is a technique to reduce $k$XOR problems to $2$XOR problems, on an exponentially larger set of variables (say, $O(n^k)$).\n", |
| 126 | + "The 2XOR is known to be efficiently solvable by some spectral analysis.\n", |
| 127 | + "\n", |
| 128 | + "For this, we pick our new variables as subsets of $[n]$ of size $k$, call them $X_S$ for each subset $S$.\n", |
| 129 | + "There are ${n \\choose k}$ variables now, and for $k \\ll n$, this is about $O(n^k)$.\n", |
| 130 | + "\n", |
| 131 | + "The equations are of the form $X_S \\oplus X_T = b(S, T)$ for every $S, T$ with $|S \\Delta T| = k$.\n", |
| 132 | + "Here $b(S, T)$ is the xor of all variables in S and T (common ones cancel out, leaving only the $k$ as above)" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "id": "10", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "## Quantum Algorithm\n", |
| 141 | + "\n", |
| 142 | + "**Theorem 4.18 (simplified)**\n", |
| 143 | + "Let $k$ (even) and $\\rho \\in (0, 1)$ be known constants.\n", |
| 144 | + "\n", |
| 145 | + "We are given an instance $\\mathcal{I}$ which is either random or planted (with advantage $\\rho$),\n", |
| 146 | + "where the number of constraints $m$ is picked above a given threshold (see Alice Theorem).\n", |
| 147 | + "\n", |
| 148 | + "For a parameter $\\ell$, if we have a classical _Kikuchi style_ algorithm with complexity $\\tilde{O}(n^\\ell)$,\n", |
| 149 | + "then there is a quantum algorithm with $\\tilde{O}(n^{\\ell/4} m \\ell^{O{\\ell}} \\log^{\\ell/2k}n)$." |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "id": "11", |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "from qualtran.bloqs.optimization.k_xor_sat.planted_noisy_kxor import PlantedNoisyKXOR\n", |
| 160 | + "from qualtran.drawing import show_bloq, show_call_graph, show_counts_sigma" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "12", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "def make_algo_example():\n", |
| 171 | + " k = 4\n", |
| 172 | + " n, m = 100, 1000\n", |
| 173 | + " rho = 0.8\n", |
| 174 | + " \n", |
| 175 | + " c = 2 # Kikuchi param: ell = c * k\n", |
| 176 | + " \n", |
| 177 | + " # generate instance\n", |
| 178 | + " rng = np.random.default_rng(142)\n", |
| 179 | + " ell = c * k\n", |
| 180 | + " inst = KXorInstance.random_instance(n=n, m=m, k=k, planted_advantage=rho, rng=rng)\n", |
| 181 | + " algo_bloq = PlantedNoisyKXOR.from_inst(inst=inst, ell=ell, rho=rho, zeta=1 / np.log(n), rng=rng)\n", |
| 182 | + "\n", |
| 183 | + " expected_complexity = n ** (ell/4) * m * ell**ell * np.log(n)**(c//2)\n", |
| 184 | + "\n", |
| 185 | + " return algo_bloq, expected_complexity" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "id": "13", |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "bloq, cost_O_tilde = make_algo_example()" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "id": "14", |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [], |
| 204 | + "source": [ |
| 205 | + "show_bloq(bloq)" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": null, |
| 211 | + "id": "15", |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [ |
| 215 | + "g, sigma = bloq.call_graph(max_depth=6)\n", |
| 216 | + "show_call_graph(g)" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": null, |
| 222 | + "id": "16", |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "from qualtran.resource_counting import get_cost_value, QECGatesCost\n", |
| 227 | + "\n", |
| 228 | + "gc = get_cost_value(bloq, QECGatesCost())\n", |
| 229 | + "gc.asdict()" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "code", |
| 234 | + "execution_count": null, |
| 235 | + "id": "17", |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [], |
| 238 | + "source": [ |
| 239 | + "(gc * (1/cost_O_tilde)).asdict()" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "id": "18", |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "f\"{cost_O_tilde:e}\"" |
| 250 | + ] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "kernelspec": { |
| 255 | + "display_name": "Python 3 (ipykernel)", |
| 256 | + "language": "python", |
| 257 | + "name": "python3" |
| 258 | + }, |
| 259 | + "language_info": { |
| 260 | + "codemirror_mode": { |
| 261 | + "name": "ipython", |
| 262 | + "version": 3 |
| 263 | + }, |
| 264 | + "file_extension": ".py", |
| 265 | + "mimetype": "text/x-python", |
| 266 | + "name": "python", |
| 267 | + "nbconvert_exporter": "python", |
| 268 | + "pygments_lexer": "ipython3", |
| 269 | + "version": "3.11.9" |
| 270 | + } |
| 271 | + }, |
| 272 | + "nbformat": 4, |
| 273 | + "nbformat_minor": 5 |
| 274 | +} |
0 commit comments