|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "e299e7a9", |
| 6 | + "metadata": { |
| 7 | + "cq.autogen": "title_cell" |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "# Guided (sparse) Hamiltonian Problem\n", |
| 11 | + "\n", |
| 12 | + "Section 4.4.2 Simulating the Kikuchi Hamiltonian\n", |
| 13 | + "\n", |
| 14 | + "This module contains oracles to implement the block-encoding of the Kikuchi\n", |
| 15 | + "Hamiltonian corresponding to an input k-XOR-SAT instance.\n", |
| 16 | + "\n", |
| 17 | + "References:\n", |
| 18 | + " [Quartic quantum speedups for planted inference](https://arxiv.org/abs/2406.19378v1)\n", |
| 19 | + " Section 4.4.2 for algorithm. Section 2.4 for definitions and notation." |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "id": "e2be674c", |
| 26 | + "metadata": { |
| 27 | + "cq.autogen": "top_imports" |
| 28 | + }, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "from qualtran import Bloq, CompositeBloq, BloqBuilder, Signature, Register\n", |
| 32 | + "from qualtran import QBit, QInt, QUInt, QAny\n", |
| 33 | + "from qualtran.drawing import show_bloq, show_call_graph, show_counts_sigma\n", |
| 34 | + "from typing import *\n", |
| 35 | + "import numpy as np\n", |
| 36 | + "import sympy\n", |
| 37 | + "import cirq" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "id": "8d10248d", |
| 43 | + "metadata": { |
| 44 | + "cq.autogen": "GuidedHamiltonian.bloq_doc.md" |
| 45 | + }, |
| 46 | + "source": [ |
| 47 | + "## `GuidedHamiltonian`\n", |
| 48 | + "Solve the guided (sparse) hamiltonian problem.\n", |
| 49 | + "\n", |
| 50 | + "Definition 4.8 (modified to accept any block-encoding):\n", |
| 51 | + "In the Guided Hamiltonian problem we are given the following as input:\n", |
| 52 | + "\n", |
| 53 | + "1. A $(\\sqrt{2} s, \\cdot, 0)$-block-encoding of a Hamiltonian $H$ such that $\\|H\\|_\\max \\le s$.\n", |
| 54 | + "2. A unitary program that prepares $|\\Psi\\rangle|0^A\\rangle$.\n", |
| 55 | + "3. Parameters $\\lambda \\in [-\\Lambda, \\Lambda]$, $\\alpha \\in (0, 1)$, $\\gamma \\in (0, 1]$.\n", |
| 56 | + "\n", |
| 57 | + "and we should output\n", |
| 58 | + "\n", |
| 59 | + "- YES (1) if $\\| \\Pi_{\\ge \\lambda} (H) |\\Psi\\rangle \\| \\ge \\gamma$\n", |
| 60 | + "- NO (0) if $\\|H\\| \\le (1 - \\alpha) \\lambda$\n", |
| 61 | + "\n", |
| 62 | + "Note that the above drops the sparse requirement, and accepts any\n", |
| 63 | + "$(\\alpha_H, \\cdot, \\cdot)$-block-encoding of $H$.\n", |
| 64 | + "In the sparse Hamiltonian case, $\\alpha_H = s$ (where $s$ is the sparsity).\n", |
| 65 | + "\n", |
| 66 | + "Algorithm (Theorem 4.9):\n", |
| 67 | + " This uses phase estimation on the block-encoding of $e^{iHt}$, and then uses\n", |
| 68 | + " amplitude amplification to increase the success probability to $1 - o(1)$.\n", |
| 69 | + "\n", |
| 70 | + "We instead directly do phase-estimation on the qubitized (Szegedy) walk operator for $H$\n", |
| 71 | + "\n", |
| 72 | + "#### Parameters\n", |
| 73 | + " - `hamiltonian`: the block-encoding of $H$\n", |
| 74 | + " - `guiding_state`: the unitary that prepares $|\\Psi\\rangle$\n", |
| 75 | + " - `lambd`: parameter $\\lambda$\n", |
| 76 | + " - `alpha`: parameter $\\alpha$\n", |
| 77 | + " - `gamma`: parameter $\\gamma$ \n", |
| 78 | + "\n", |
| 79 | + "#### References\n", |
| 80 | + " - [Quartic quantum speedups for planted inference](https://arxiv.org/abs/2406.19378v1). Section 4.2 \"Guided Sparse Hamiltonian Problem\".\n" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "id": "29d536c3", |
| 87 | + "metadata": { |
| 88 | + "cq.autogen": "GuidedHamiltonian.bloq_doc.py" |
| 89 | + }, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "from qualtran.bloqs.optimization.k_xor_sat.guided_hamiltonian import GuidedHamiltonian" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "markdown", |
| 97 | + "id": "a216ac70", |
| 98 | + "metadata": { |
| 99 | + "cq.autogen": "GuidedHamiltonian.example_instances.md" |
| 100 | + }, |
| 101 | + "source": [ |
| 102 | + "### Example Instances" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "id": "fabf68e4", |
| 109 | + "metadata": { |
| 110 | + "cq.autogen": "GuidedHamiltonian.guided_hamiltonian" |
| 111 | + }, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "import sympy\n", |
| 115 | + "\n", |
| 116 | + "from qualtran.bloqs.optimization.k_xor_sat import GuidingState, KikuchiHamiltonian, KXorInstance\n", |
| 117 | + "from qualtran.bloqs.state_preparation.black_box_prepare import BlackBoxPrepare\n", |
| 118 | + "from qualtran.symbolics import ceil, log2\n", |
| 119 | + "\n", |
| 120 | + "n, k, m, c = sympy.symbols(\"n k m c\", positive=True, integer=True)\n", |
| 121 | + "zeta = sympy.symbols(r\"\\zeta\", positive=True)\n", |
| 122 | + "\n", |
| 123 | + "inst_guide = KXorInstance.symbolic(n, (1 - zeta) * m, k, max_rhs=2)\n", |
| 124 | + "inst_solve = KXorInstance.symbolic(n, zeta * m, k, max_rhs=2)\n", |
| 125 | + "l = c * k\n", |
| 126 | + "s = l * ceil(log2(n))\n", |
| 127 | + "\n", |
| 128 | + "Psi = GuidingState(inst_guide, l)\n", |
| 129 | + "H = KikuchiHamiltonian(inst_solve, c * k, s)\n", |
| 130 | + "\n", |
| 131 | + "lambd, alpha, gamma = sympy.symbols(r\"\\lambda \\alpha \\gamma\", positive=True, real=True)\n", |
| 132 | + "guided_hamiltonian = GuidedHamiltonian(H, BlackBoxPrepare(Psi), lambd, alpha, gamma)" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "id": "7ad9d994", |
| 138 | + "metadata": { |
| 139 | + "cq.autogen": "GuidedHamiltonian.graphical_signature.md" |
| 140 | + }, |
| 141 | + "source": [ |
| 142 | + "#### Graphical Signature" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": null, |
| 148 | + "id": "5ae17ad5", |
| 149 | + "metadata": { |
| 150 | + "cq.autogen": "GuidedHamiltonian.graphical_signature.py" |
| 151 | + }, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "from qualtran.drawing import show_bloqs\n", |
| 155 | + "show_bloqs([guided_hamiltonian],\n", |
| 156 | + " ['`guided_hamiltonian`'])" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "id": "1b3e1663", |
| 162 | + "metadata": { |
| 163 | + "cq.autogen": "GuidedHamiltonian.call_graph.md" |
| 164 | + }, |
| 165 | + "source": [ |
| 166 | + "### Call Graph" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": null, |
| 172 | + "id": "08946e48", |
| 173 | + "metadata": { |
| 174 | + "cq.autogen": "GuidedHamiltonian.call_graph.py" |
| 175 | + }, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "from qualtran.resource_counting.generalizers import ignore_split_join\n", |
| 179 | + "guided_hamiltonian_g, guided_hamiltonian_sigma = guided_hamiltonian.call_graph(max_depth=1, generalizer=ignore_split_join)\n", |
| 180 | + "show_call_graph(guided_hamiltonian_g)\n", |
| 181 | + "show_counts_sigma(guided_hamiltonian_sigma)" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "markdown", |
| 186 | + "id": "0b22b193", |
| 187 | + "metadata": { |
| 188 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.bloq_doc.md" |
| 189 | + }, |
| 190 | + "source": [ |
| 191 | + "## `GuidedHamiltonianPhaseEstimation`\n", |
| 192 | + "Implement the phase estimation algorithm $U_\\text{PE}$" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "id": "b3806eb0", |
| 199 | + "metadata": { |
| 200 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.bloq_doc.py" |
| 201 | + }, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "from qualtran.bloqs.optimization.k_xor_sat.guided_hamiltonian import GuidedHamiltonianPhaseEstimation" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "markdown", |
| 209 | + "id": "500f891d", |
| 210 | + "metadata": { |
| 211 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.example_instances.md" |
| 212 | + }, |
| 213 | + "source": [ |
| 214 | + "### Example Instances" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": null, |
| 220 | + "id": "bfdbf9a6", |
| 221 | + "metadata": { |
| 222 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.guided_phase_estimate_symb" |
| 223 | + }, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "import sympy\n", |
| 227 | + "\n", |
| 228 | + "from qualtran.bloqs.optimization.k_xor_sat import GuidingState, KikuchiHamiltonian, KXorInstance\n", |
| 229 | + "from qualtran.bloqs.state_preparation.black_box_prepare import BlackBoxPrepare\n", |
| 230 | + "from qualtran.symbolics import ceil, log2\n", |
| 231 | + "\n", |
| 232 | + "n, k, c = sympy.symbols(\"n k c\", positive=True, integer=True)\n", |
| 233 | + "m_guide, m_solve = sympy.symbols(\"m_1 m_2\", positive=True, integer=True)\n", |
| 234 | + "\n", |
| 235 | + "inst_guide = KXorInstance.symbolic(n, m_guide, k, max_rhs=2)\n", |
| 236 | + "inst_solve = KXorInstance.symbolic(n, m_solve, k, max_rhs=2)\n", |
| 237 | + "l = c * k\n", |
| 238 | + "s = l * ceil(log2(n))\n", |
| 239 | + "\n", |
| 240 | + "Psi = GuidingState(inst_guide, l)\n", |
| 241 | + "H = KikuchiHamiltonian(inst_solve, c * k, s)\n", |
| 242 | + "\n", |
| 243 | + "eps, delta = sympy.symbols(r\"\\epsilon_{PE} \\delta_{PE}\", positive=True, real=True)\n", |
| 244 | + "guided_phase_estimate_symb = GuidedHamiltonianPhaseEstimation(\n", |
| 245 | + " H, BlackBoxPrepare(Psi), eps, delta\n", |
| 246 | + ")\n" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "markdown", |
| 251 | + "id": "d6408318", |
| 252 | + "metadata": { |
| 253 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.graphical_signature.md" |
| 254 | + }, |
| 255 | + "source": [ |
| 256 | + "#### Graphical Signature" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "id": "3a1d74b2", |
| 263 | + "metadata": { |
| 264 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.graphical_signature.py" |
| 265 | + }, |
| 266 | + "outputs": [], |
| 267 | + "source": [ |
| 268 | + "from qualtran.drawing import show_bloqs\n", |
| 269 | + "show_bloqs([guided_phase_estimate_symb],\n", |
| 270 | + " ['`guided_phase_estimate_symb`'])" |
| 271 | + ] |
| 272 | + }, |
| 273 | + { |
| 274 | + "cell_type": "markdown", |
| 275 | + "id": "a5d710cd", |
| 276 | + "metadata": { |
| 277 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.call_graph.md" |
| 278 | + }, |
| 279 | + "source": [ |
| 280 | + "### Call Graph" |
| 281 | + ] |
| 282 | + }, |
| 283 | + { |
| 284 | + "cell_type": "code", |
| 285 | + "execution_count": null, |
| 286 | + "id": "749b6440", |
| 287 | + "metadata": { |
| 288 | + "cq.autogen": "GuidedHamiltonianPhaseEstimation.call_graph.py" |
| 289 | + }, |
| 290 | + "outputs": [], |
| 291 | + "source": [ |
| 292 | + "from qualtran.resource_counting.generalizers import ignore_split_join\n", |
| 293 | + "guided_phase_estimate_symb_g, guided_phase_estimate_symb_sigma = guided_phase_estimate_symb.call_graph(max_depth=1, generalizer=ignore_split_join)\n", |
| 294 | + "show_call_graph(guided_phase_estimate_symb_g)\n", |
| 295 | + "show_counts_sigma(guided_phase_estimate_symb_sigma)" |
| 296 | + ] |
| 297 | + } |
| 298 | + ], |
| 299 | + "metadata": { |
| 300 | + "kernelspec": { |
| 301 | + "display_name": "Python 3", |
| 302 | + "language": "python", |
| 303 | + "name": "python3" |
| 304 | + }, |
| 305 | + "language_info": { |
| 306 | + "name": "python" |
| 307 | + } |
| 308 | + }, |
| 309 | + "nbformat": 4, |
| 310 | + "nbformat_minor": 5 |
| 311 | +} |
0 commit comments