forked from dwavesystems/dwave-networkx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchimera_layout.py
329 lines (257 loc) · 12.1 KB
/
chimera_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2018 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ================================================================================================
"""
Tools to visualize :term:`Chimera` lattices and weighted :term:`graph` problems on them.
"""
import networkx as nx
from networkx import draw
from dwave_networkx.drawing.qubit_layout import draw_qubit_graph, draw_embedding, draw_yield
from dwave_networkx.generators.chimera import chimera_graph, find_chimera_indices, chimera_coordinates
__all__ = ['chimera_layout', 'draw_chimera', 'draw_chimera_embedding', 'draw_chimera_yield']
def chimera_layout(G, scale=1., center=None, dim=2):
"""Positions the nodes of graph ``G`` in a Chimera layout.
Unit cells are rendered in a cross layout.
NumPy (https://scipy.org) is required for this function.
Parameters
----------
G : NetworkX graph
:term:`Chimera` :term:`graph` or :term:`subgraph` of a
Chimera graph. If every node in ``G`` has a ``chimera_index``
attribute, the node position in the ``chimera_index``
attribute is used to place each node. Otherwise,
a best-effort attempt is made to find the node positions.
scale : float (default 1.)
Scale factor. If ``scale`` = 1, all positions fit within [0, 1]
on the x-axis and [-1, 0] on the y-axis.
center : None or array (default None)
Coordinates of the top left corner.
dim : int (default 2)
Number of dimensions. If ``dim`` > 2, all extra dimensions are
set to 0.
Returns
-------
pos : dict
Dictionary of positions keyed by node.
Examples
--------
>>> G = dnx.chimera_graph(1)
>>> pos = dnx.chimera_layout(G)
"""
if not isinstance(G, nx.Graph):
empty_graph = nx.Graph()
empty_graph.add_edges_from(G)
G = empty_graph
# now we get chimera coordinates for the translation
# first, check if we made it
if G.graph.get("family") == "chimera":
m = G.graph['rows']
n = G.graph['columns']
t = G.graph['tile']
# get a node placement function
xy_coords = chimera_node_placer_2d(m, n, t, scale, center, dim)
if G.graph.get('labels') == 'coordinate':
pos = {v: xy_coords(*v) for v in G.nodes()}
elif G.graph.get('data'):
pos = {v: xy_coords(*dat['chimera_index']) for v, dat in G.nodes(data=True)}
else:
coord = chimera_coordinates(m, n, t)
pos = {v: xy_coords(*coord.linear_to_chimera(v)) for v in G.nodes()}
else:
# best case scenario, each node in G has a chimera_index attribute. Otherwise
# we will try to determine it using the find_chimera_indices function.
if all('chimera_index' in dat for __, dat in G.nodes(data=True)):
chimera_indices = {v: dat['chimera_index'] for v, dat in G.nodes(data=True)}
else:
chimera_indices = find_chimera_indices(G)
# we could read these off of the name attribute for G, but we would want the values in
# the nodes to override the name in case of conflict.
m = max(idx[0] for idx in chimera_indices.values()) + 1
n = max(idx[1] for idx in chimera_indices.values()) + 1
t = max(idx[3] for idx in chimera_indices.values()) + 1
xy_coords = chimera_node_placer_2d(m, n, t, scale, center, dim)
# compute our coordinates
pos = {v: xy_coords(i, j, u, k) for v, (i, j, u, k) in chimera_indices.items()}
return pos
def chimera_node_placer_2d(m, n, t, scale=1., center=None, dim=2):
"""Generates a function that converts Chimera indices to x- and
y-coordinates for a plot.
Parameters
----------
m : int
Number of rows in the :term:`Chimera` lattice.
n : int
Number of columns in the Chimera lattice.
t : int
Size of the shore within each Chimera tile.
scale : float (default 1.)
Scale factor. If ``scale`` = 1, all positions fit within [0, 1]
on the x-axis and [-1, 0] on the y-axis.
center : None or array (default None)
Coordinates of the top left corner.
dim : int (default 2)
Number of dimensions. If ``dim`` > 2, all extra dimensions are
set to 0.
Returns
-------
xy_coords : Function
Function that maps a Chimera index ``(i, j, u, k)`` in an
``(m, n, t)`` Chimera lattice to x- and y-coordinates.
"""
import numpy as np
tile_center = t // 2
tile_length = t + 3 # 1 for middle of cross, 2 for spacing between tiles
# want the enter plot to fill in [0, 1] when scale=1
scale /= max(m, n) * tile_length - 3
grid_offsets = {}
if center is None:
center = np.zeros(dim)
else:
center = np.asarray(center)
paddims = dim - 2
if paddims < 0:
raise ValueError("layout must have at least two dimensions")
if len(center) != dim:
raise ValueError("length of center coordinates must match dimension of layout")
def _xy_coords(i, j, u, k):
# row, col, shore, shore index
# first get the coordinatiates within the tile
if k < tile_center:
p = k
else:
p = k + 1
if u:
xy = np.array([tile_center, -1 * p])
else:
xy = np.array([p, -1 * tile_center])
# next offset the corrdinates based on the which tile
if i > 0 or j > 0:
if (i, j) in grid_offsets:
xy += grid_offsets[(i, j)]
else:
off = np.array([j * tile_length, -1 * i * tile_length])
xy += off
grid_offsets[(i, j)] = off
# convention for Chimera-lattice pictures is to invert the y-axis
return np.hstack((xy * scale, np.zeros(paddims))) + center
return _xy_coords
def draw_chimera(G, **kwargs):
"""Draws graph ``G`` in a Chimera layout.
Unit cells are rendered in a cross layout.
Parameters
----------
G : NetworkX graph
:term:`Chimera` :term:`graph` or a :term:`subgraph` of a Chimera graph.
linear_biases : dict (optional, default {})
Linear biases for all nodes of ``G`` as a dict of
the form ``{node: bias, ...}``, where each bias is numeric.
If specified, the linear biases are visualized on the plot.
quadratic_biases : dict (optional, default {})
Quadratic biases for all edges of ``G`` as a dict of
the form ``{edge: bias, ...}``, where each bias is numeric. Self-loop
edges (i.e., :math:`i=j`) are treated as linear biases.
If specified, the quadratic biases are visualized on the plot.
kwargs : optional keywords
Parameters in :func:`~networkx.drawing.nx_pylab.draw_networkx`, except for the ``pos`` parameter.
If the ``linear_biases`` or ``quadratic_biases`` parameters are specified,
the :func:`~networkx.drawing.nx_pylab.draw_networkx` ``node_color``
or ``edge_color`` parameters are ignored.
Examples
--------
>>> # Plot 2x2 Chimera unit cells
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> G = dnx.chimera_graph(2, 2, 4)
>>> dnx.draw_chimera(G) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
draw_qubit_graph(G, chimera_layout(G), **kwargs)
def draw_chimera_embedding(G, *args, **kwargs):
"""Draws an embedding onto the Chimera graph ``G``.
Parameters
----------
G : NetworkX graph
:term:`Chimera` :term:`graph` or a :term:`subgraph` of a Chimera graph.
emb : dict
Embedding for all nodes of ``G`` as a dict of chains
of the form ``{node: chain, ...}``. where chains are iterables
of qubit labels. Qubits are nodes in ``G``.
embedded_graph : NetworkX graph (optional, default None)
Graph which contains all keys of the ``emb`` parameter as nodes. If specified,
the edges of ``G`` are considered to be interactions if and only if they
exist between two chains of the ``emb`` parameter and if their keys are connected by
an edge in the ``embedded_graph`` parameter; only the couplers for edges of ``G``
that are considered to be interactions are displayed.
interaction_edges : list (optional, default None)
Interactions as a list of edges.
If this parameter is specified, only the couplers in the list are displayed.
show_labels: boolean (optional, default False)
If True, each chain in the ``emb`` parameter is labelled with its key.
chain_color : dict (optional, default None)
Chain colors associated with each key in the ``emb`` parameter as a dict
of the form ``{node: rgba_color, ...}``, where colors must be length-4
tuples of floats between 0 and 1, inclusive. If None,
each chain is assigned a different color.
unused_color : tuple (optional, default (0.9,0.9,0.9,1.0))
Color to use for graph ``G``'s nodes and edges that are not part of
chains, and edges that are neither chain edges nor interactions.
If None, these nodes and edges are not shown.
overlapped_embedding: boolean (optional, default False)
If True, chains in the ``emb`` parameter may overlap (contain
the same vertices in ``G``), and the drawing displays these overlaps as
concentric circles.
kwargs : optional keywords
Parameters in :func:`~networkx.drawing.nx_pylab.draw_networkx`, except for the ``pos`` parameter.
If the ``linear_biases`` or ``quadratic_biases`` parameters are specified,
the :func:`~networkx.drawing.nx_pylab.draw_networkx` ``node_color``
or ``edge_color`` parameters are ignored.
"""
draw_embedding(G, chimera_layout(G), *args, **kwargs)
def draw_chimera_yield(G, **kwargs):
"""Draws graph ``G`` with highlighted faults.
Parameters
----------
G : NetworkX graph
:term:`Graph` to be parsed for faults.
unused_color : tuple or color string (optional, default (0.9,0.9,0.9,1.0))
Color to use for graph ``G``'s nodes and edges which are not faults.
If None, these nodes and edges are not shown.
fault_color : tuple or color string (optional, default (1.0,0.0,0.0,1.0))
Color to represent nodes that are absent from graph ``G``. Colors must be
length-4 tuples of floats between 0 and 1, inclusive.
fault_shape : string, optional (default='x')
Shape of the fault nodes. The shapes are the same as those specified for
`Matplotlib markers <https://matplotlib.org/stable/api/markers_api.html#module-matplotlib.markers>`_.
fault_style : string, optional (default='dashed')
Line style for fault edges. The line style can be any of the following values:
``'solid'``, ``'dashed'``, ``'dotted'``, ``'dashdot'``.
kwargs : optional keywords
Parameters in :class:`.draw_networkx`, except for the ``pos`` parameter.
If the ``linear_biases`` or ``quadratic_biases`` parameters are specified,
the :func:`~networkx.drawing.nx_pylab.draw_networkx` ``node_color``
or ``edge_color`` parameters are ignored.
"""
try:
assert(G.graph["family"] == "chimera")
m = G.graph["rows"]
n = G.graph["columns"]
t = G.graph["tile"]
coordinates = G.graph["labels"] == "coordinate"
except:
raise ValueError("Target chimera graph needs to have columns, rows, \
tile, and label attributes to be able to identify faulty qubits.")
perfect_graph = chimera_graph(m,n,t, coordinates=coordinates)
draw_yield(G, chimera_layout(perfect_graph), perfect_graph, **kwargs)