-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy patharcesutils.py
168 lines (144 loc) · 4.2 KB
/
arcesutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from astropy.io import fits as pyfits
import scipy
import glob
import os
import sys
sys.path.append("../utils/GLOBALutils")
import GLOBALutils
from pylab import *
def FileClassify(dir, log,binning):
"""
Classifies all files in a directory and writes a night log of science images
"""
# define output lists
thars = []
biases = []
quartzB = []
quartzR = []
science = []
obnames = []
exptimes = []
thar_dates = []
f = open(log,'w')
bad_files = []
if os.access(dir+'bad_files.txt',os.F_OK):
bf = open(dir+'bad_files.txt')
linesbf = bf.readlines()
for line in linesbf:
bad_files.append(dir+line[:-1])
bf.close()
all_files = glob.glob(dir+"/*fits")
for archivo in all_files:
dump = False
for bf in bad_files:
if archivo == bf:
dump = True
break
h = pyfits.open(archivo)
if dump == False and h[0].header['INSTRUME'] == 'echelle':
if h[0].header['IMAGETYP'] == 'object':
science.append(archivo)
obname = h[0].header['OBJNAME']
ra = h[0].header['RA']
delta = h[0].header['DEC']
airmass = h[0].header['AIRMASS']
texp = h[0].header['EXPTIME']
date = h[0].header['DATE-OBS'][:10]
hour = h[0].header['DATE-OBS'][11:]
obnames.append( obname )
exptimes.append( texp )
line = "%-15s %10s %10s %8.2f %4.2f %8s %8s %s\n" % (obname, ra, delta, texp, airmass, date, hour, archivo)
f.write(line)
elif h[0].header['IMAGETYP'] == 'zero':
biases.append(archivo)
elif h[0].header['IMAGETYP'] == 'flat':
if h[0].header['FILTER'] == 'Blue':
quartzB.append(archivo)
elif h[0].header['FILTER'] == 'Open':
quartzR.append(archivo)
elif h[0].header['IMAGETYP'] == 'comp':
thars.append(archivo)
mjd, mjd0 = mjd_fromheader(h)
thar_dates.append( mjd )
f.close()
return biases, quartzB, quartzR, science, thars, thar_dates, obnames, exptimes
def mjd_fromheader(h):
"""
return modified Julian date from header
"""
datetu = h[0].header['DATE-OBS'][:10]
ut = h[0].header['DATE-OBS'][11:]
mjd0,mjd,i = GLOBALutils.iau_cal2jd(int(datetu[0:4]),int(datetu[5:7]),int(datetu[8:]))
ut = float(ut[:2]) + float(ut[3:5])/60. + float(ut[6:])/3600.
mjd_start = mjd + ut/24.0
secinday = 24*3600.0
fraction = .5
texp = h[0].header['EXPTIME'] #sec
mjd = mjd_start + (fraction * texp) / secinday
return mjd, mjd0
def bad_col_corr(dat):
mat = np.array([[80 ,81 ,199 ,2048],\
[240 ,241 ,530 ,2048],\
[469 ,470 ,1555,1666],\
[547 ,548 ,1690,1703],\
[632 ,634 ,1985,1962],\
[766 ,767 ,782 ,1980],\
[832 ,833 ,1850,1906],\
[960 ,961, 1590,1871],\
[1263,1264,1772,1816],\
[1334,1335,1454,2048],\
[1361,1362,1885,1924],\
[1395,1396,1906,1955],\
[1460,1461,488 ,2048],\
[1477,1478,758 ,2048],\
[1510,1511,771 ,2048],\
[1581,1582,1398,1763],\
[1629,1630,420 ,2048],\
[1661,1662,643 ,1980]])
for bd in mat:
new = .5*( dat[bd[2]:bd[3], bd[0]-1] + dat[bd[2]:bd[3],bd[1]] )
bci = bd[0]
while bci < bd[1]:
dat[ bd[2]:bd[3], bci ] = new
bci += 1
return dat
def MedianCombine(ImgList, bias = 0.):
"""
Median combine a list of images
"""
n = len(ImgList)
if n == 0:
print "\t\tWarning: 0 biases"
return 0, 0, 0
h = pyfits.open(ImgList[0])[0]
d = h.data
d = OverscanTrim(d)
d = bad_col_corr(d)
d -= bias
factor = 1.25
if (n < 3):
factor = 1
ronoise = factor * h.header['RDNOISE'] / np.sqrt(n)
gain = h.header['GAIN']
if (n == 1):
return d, ronoise, gain
else:
for i in range(n-1):
h = pyfits.open(ImgList[i+1])[0]
#print ImgList[i+1], h.data.shape
d2 = OverscanTrim(h.data)
d2 = bad_col_corr(d2)
d = np.dstack( (d ,d2 - bias ))
return np.median(d,axis=2), ronoise, gain
def OverscanTrim(d):
"""
Overscan correct and Trim a refurbished APO image
"""
ov = d[:20,21:-59]
ov = np.median(ov,axis = 0)
newdata = d[20:,21:-59]
overscan = np.zeros(newdata.shape)
for i in range(overscan.shape[1]):
overscan[:,i] = ov
newdata = newdata - overscan
return newdata