-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
86 lines (63 loc) · 2.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import keras
import pickle
from keras.preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from itertools import product
# Load the training data
training_data = np.genfromtxt(
'/Volumes/Samsung_T5/data/random01/train.tsv',
delimiter='\t', usecols=(0,1), dtype=None, comments=None)
# Decompose training data into two vectors
# x - input
# y - labels
train_x = [x[0] for x in training_data]
train_y = np.asarray([x[1] for x in training_data])
def bigram_generator(x):
for i in range(2,len(x)+1):
yield x[i-2:i]
# Build the vocabulary
# 1. Define observable letters
# 2. Define observable letter bigrams
# 3. Build lookup tables
letters = ' !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~'
bigram2ind = dict() # bigram -> index
vocab = list() # index -> bigram
vocab_size = 0
for a, b in product(letters, repeat=2): # iterate in pairs
bigram = bytes(a + b, 'utf-8')
if bigram in bigram2ind:
continue
else:
bigram2ind[bigram] = vocab_size
vocab.append(bigram)
vocab_size += 1
# Convert strings to index arrays (one-hot matrix)
matrix = np.zeros((len(train_x), vocab_size))
for i, x in enumerate(train_x):
for bigram in bigram_generator(x):
j = bigram2ind[bigram]
matrix[i][j] = 1
train_x = matrix
train_y = keras.utils.to_categorical(train_y, 2)
model = Sequential()
model.add(Dense(512, input_shape=(vocab_size,), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(train_x, train_y,
batch_size=32,
epochs=4,
verbose=1,
validation_split=0.1,
shuffle=True)
model_json = model.to_json()
with open('model.json', 'w') as json_file:
json_file.write(model_json)
model.save_weights('model.h5')
pickle.dump(vocab, open('vocab.pickle', 'wb'))