-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm4.py
291 lines (241 loc) · 11.1 KB
/
m4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import re
from torch_geometric.nn import GCNConv, global_mean_pool
import matplotlib.pyplot as plt
from matplotlib.widgets import Button, TextBox
import networkx as nx
import os
class EquationEncoder:
def __init__(self, max_length=20):
self.max_length = max_length
self.char_to_idx = {
'0': 0, '1': 1, '2': 2, '3': 3, '4': 4,
'5': 5, '6': 6, '7': 7, '8': 8, '9': 9,
'x': 10, '^': 11, '+': 12, '-': 13, '=': 14,
' ': 15
}
self.idx_to_char = {v: k for k, v in self.char_to_idx.items()}
def encode_equation(self, equation):
encoded = torch.zeros(self.max_length, dtype=torch.long)
for i, char in enumerate(equation[:self.max_length]):
if char in self.char_to_idx:
encoded[i] = self.char_to_idx[char]
return encoded
def decode_equation(self, encoded):
return ''.join(self.idx_to_char[idx.item()] for idx in encoded if idx.item() in self.idx_to_char)
class EquationType:
LINEAR = 'linear'
QUADRATIC = 'quadratic'
class EquationClassifier(nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.embedding = nn.Embedding(16, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, 2)
def forward(self, x):
x = self.embedding(x)
lstm_out, _ = self.lstm(x)
return self.fc(lstm_out[:, -1])
class EquationSolver(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.embedding = nn.Embedding(16, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers=2, batch_first=True)
self.fc_layers = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, output_size)
)
def forward(self, x):
x = self.embedding(x)
lstm_out, _ = self.lstm(x)
return self.fc_layers(lstm_out[:, -1])
class MLMathSolver:
def __init__(self):
self.encoder = EquationEncoder()
self.classifier = EquationClassifier(input_size=20, hidden_size=128)
self.linear_solver = EquationSolver(input_size=20, hidden_size=128, output_size=1)
self.quadratic_solver = EquationSolver(input_size=20, hidden_size=128, output_size=2)
def load_model(self, model, model_path):
"""Load pre-trained models if available."""
if os.path.exists(model_path):
model.load_state_dict(torch.load(model_path))
model.eval()
print(f"Loaded model from {model_path}")
else:
print(f"Model file {model_path} not found.")
return model
def load_models(self):
"""Load all models."""
self.classifier = self.load_model(self.classifier, 'classifier_model.pth')
self.linear_solver = self.load_model(self.linear_solver, 'linear_solver_model.pth')
self.quadratic_solver = self.load_model(self.quadratic_solver, 'quadratic_solver_model.pth')
def parse_equation(self, equation_str):
equation_str = equation_str.replace(" ", "").lower()
is_quadratic = 'x^2' in equation_str or 'x²' in equation_str
if is_quadratic:
pattern = r'([-+]?\d*)?x\^2([-+]?\d*)?x?([-+]?\d+)?=0'
match = re.match(pattern, equation_str)
if match:
a = float(match.group(1) or 1)
b = float(match.group(2) or 0)
c = float(match.group(3) or 0)
return EquationType.QUADRATIC, (a, b, c)
else:
pattern = r'([-+]?\d*)?x([-+]?\d+)?=(\d+)'
match = re.match(pattern, equation_str)
if match:
a = float(match.group(1) or 1)
b = float(match.group(2) or 0)
c = float(match.group(3))
return EquationType.LINEAR, (a, b, c)
raise ValueError("Invalid equation format")
def solve_equation(self, equation_str):
# Encode equation
encoded_eq = self.encoder.encode_equation(equation_str)
encoded_eq = encoded_eq.unsqueeze(0) # Add batch dimension
# Classify equation type
with torch.no_grad():
eq_type_logits = self.classifier(encoded_eq)
eq_type_pred = torch.argmax(eq_type_logits, dim=1).item()
# Solve based on type
if eq_type_pred == 0: # Linear
with torch.no_grad():
solution = self.linear_solver(encoded_eq)
return [round(solution.item(), 4)] # Ensure the output is rounded and formatted
else: # Quadratic
with torch.no_grad():
solutions = self.quadratic_solver(encoded_eq)
return [round(sol, 4) for sol in solutions.tolist()[0]] # Ensure the output is rounded and formatted
def _solve_linear(self, encoded_eq):
with torch.no_grad():
solution = self.linear_solver(encoded_eq)
return [solution.item()]
def _solve_quadratic(self, encoded_eq):
with torch.no_grad():
solutions = self.quadratic_solver(encoded_eq)
return solutions.tolist()[0]
def train_models(self, training_data):
"""Training logic here (separated for future scalability)."""
pass
class SolutionVisualizer:
def __init__(self, figsize=(12, 8)):
self.figsize = figsize
self.fig = None
self.solver = MLMathSolver()
self.solver.load_models()
def setup_figure(self):
self.fig = plt.figure(figsize=self.figsize)
gs = self.fig.add_gridspec(2, 2)
# Create axes
self.ax_equation = self.fig.add_subplot(gs[0, 0])
self.ax_graph = self.fig.add_subplot(gs[0, 1])
self.ax_solution = self.fig.add_subplot(gs[1, :])
# Input box
ax_input = plt.axes([0.1, 0.02, 0.3, 0.075])
self.text_input = TextBox(ax_input, 'Equation:', initial='x + 5 = 10')
self.text_input.on_submit(self.solve_equation)
# Solve button
ax_solve = plt.axes([0.45, 0.02, 0.1, 0.075])
self.btn_solve = Button(ax_solve, 'Solve')
self.btn_solve.on_clicked(lambda _: self.solve_equation(self.text_input.text))
self.fig.suptitle('ML Math Equation Solver', fontsize=14)
def solve_equation(self, equation_str):
try:
# Clear previous plots
for ax in [self.ax_equation, self.ax_graph, self.ax_solution]:
ax.clear()
# Parse and solve equation
eq_type, coefficients = self.solver.parse_equation(equation_str)
solutions = self.solver.solve_equation(equation_str)
# Display equation
self.ax_equation.text(0.5, 0.5, f"Equation: {equation_str}",
fontsize=12, ha='center')
self.ax_equation.axis('off')
# Plot graph
x = np.linspace(-10, 10, 200)
if eq_type == EquationType.LINEAR:
a, b, c = coefficients
y = a * x + b
self.ax_graph.plot(x, y, label=f"y = {a}x + {b}")
self.ax_graph.axhline(y=0, color='k', linestyle='-', alpha=0.3)
self.ax_graph.axvline(x=0, color='k', linestyle='-', alpha=0.3)
self.ax_graph.grid(True, alpha=0.3)
self.ax_graph.set_title('Linear Function')
else: # Quadratic
a, b, c = coefficients
y = a * x**2 + b * x + c
self.ax_graph.plot(x, y, label=f"y = {a}x^2 + {b}x + {c}")
self.ax_graph.axhline(y=0, color='k', linestyle='-', alpha=0.3)
self.ax_graph.axvline(x=0, color='k', linestyle='-', alpha=0.3)
self.ax_graph.grid(True, alpha=0.3)
self.ax_graph.set_title('Quadratic Function')
# Display solutions
solution_text = "Solutions:\n" + "\n".join([f"x = {sol}" for sol in solutions])
self.ax_solution.text(0.5, 0.5, solution_text,
fontsize=12, ha='center')
self.ax_solution.axis('off')
plt.draw()
except ValueError as e:
self.ax_solution.text(0.5, 0.5, f"Error: {str(e)}",
fontsize=12, ha='center', color='red')
self.ax_solution.axis('off')
plt.draw()
def _display_results(self, equation_str, solutions, eq_type, coefficients):
# Display equation
self.ax_equation.text(0.5, 0.5, f"Equation: {equation_str}", fontsize=12, ha='center')
self.ax_equation.axis('off')
# Plot graph
x = np.linspace(-10, 10, 200)
if eq_type == EquationType.LINEAR:
a, b, c = coefficients
y = a * x + b
self.ax_graph.plot(x, y)
self.ax_graph.set_title('Linear Function')
else:
a, b, c = coefficients
y = a * x**2 + b * x + c
self.ax_graph.plot(x, y)
self.ax_graph.set_title('Quadratic Function')
# Display solutions
solution_text = f"Solutions: {solutions}"
self.ax_solution.text(0.5, 0.5, solution_text, fontsize=12, ha='center')
self.ax_solution.axis('off')
plt.draw()
def generate_training_data(num_samples=1000):
linear_equations = []
quadratic_equations = []
for _ in range(num_samples):
# Generate linear equations
a = np.random.uniform(-10, 10)
b = np.random.uniform(-10, 10)
c = np.random.uniform(-10, 10)
linear_eq = f"{a}x + {b} = {c}"
solution = (c - b) / a
linear_equations.append((linear_eq, solution))
# Generate quadratic equations
a = np.random.uniform(-10, 10)
b = np.random.uniform(-10, 10)
c = np.random.uniform(-10, 10)
quadratic_eq = f"{a}x^2 + {b}x + {c} = 0"
discriminant = b**2 - 4*a*c
if discriminant >= 0:
x1 = (-b + np.sqrt(discriminant)) / (2*a)
x2 = (-b - np.sqrt(discriminant)) / (2*a)
quadratic_equations.append((quadratic_eq, (x1, x2)))
return linear_equations, quadratic_equations
def main():
# Generate training data
linear_data, quadratic_data = generate_training_data()
# Create and train solver
solver = MLMathSolver()
solver.train_models({'linear': linear_data, 'quadratic': quadratic_data})
# Create and display visualizer
visualizer = SolutionVisualizer()
visualizer.setup_figure()
plt.show()
if __name__ == "__main__":
main()