-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_arch.py
271 lines (202 loc) · 12.5 KB
/
model_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
""" Network Architecture file. """
import sys
import os
import numpy as np
import time as time
import pickle as pkl
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.layers.python.layers.initializers import variance_scaling_initializer
from tensorflow.contrib.slim.python.slim.nets import resnet_v2
from smpl.smpl_layer import SmplTPoseLayer
from smpl.batch_lbs import batch_rodrigues
from render.render_layer_ortho import RenderLayer
import render.vertex_normal_expose as dirt_expose
import utils
import config as cfg
### Arch specific flags
JOINT_RES = cfg.JOINT_RES
IMG_W = cfg.IMG_W
IMG_H = cfg.IMG_H
emb_size = cfg.emb_size
n_preds = cfg.n_preds
PI = np.pi
def Res50_backbone_setup(img_in, is_training=True, weight_decay=0.001, reuse=False):
""" Resnet v2-50, CNN backbone to process image. """
with slim.arg_scope(resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
net, end_points = resnet_v2.resnet_v2_50(img_in, num_classes=None, is_training=is_training, reuse=reuse, scope='resnet_v2_50')
net = tf.squeeze(net, axis=[1, 2])
return net
def FC_Encoder( cnn_ft, l_neurons=1024, num_preds=n_preds, is_training=True, reuse=False, name="FC_Encoder"):
""" FC layer to process image features. """
with tf.variable_scope(name, reuse=reuse) as scope:
net = slim.fully_connected(cnn_ft, l_neurons, scope='fc1')
net = slim.dropout(net, 0.5, is_training=is_training, scope='dropout1')
net = slim.fully_connected(net, l_neurons, scope='fc2')
net = slim.dropout(net, 0.5, is_training=is_training, scope='dropout2')
small_xavier = variance_scaling_initializer(factor=.01, mode='FAN_AVG', uniform=True)
net_out = slim.fully_connected( net, num_preds, activation_fn=None, weights_initializer=small_xavier, scope='fc3')
return net_out
class NetModel(object):
def __init__(self, scope_name, batch_size, is_training=True, is_fine_tune=False):
""" Init for Model-arch """
self.scope = scope_name
self.batch_size = batch_size
self.is_training = is_training
self.is_fine_tune = is_fine_tune
self.num_stages = cfg.num_stages
with tf.variable_scope(self.scope):
self.add_placeholders()
self.build_network()
def add_placeholders(self):
""" Input Placeholders """
self.in_img = tf.placeholder(tf.float32, shape=[self.batch_size, IMG_H, IMG_W, 3])
def setup_cnn_layers(self):
""" CNN + FC regressor, Img -> [Pose_emb, Beta, Cam, Scale, Trans] """
### CNN backbone
res_img_ft = Res50_backbone_setup(self.in_img, is_training = self.is_training and not self.is_fine_tune, reuse=False)
with tf.variable_scope(self.scope) as scope:
FC_layer = FC_Encoder
### Base init params
base_pose_emb = np.zeros([1, cfg.emb_size], dtype=np.float32)
base_betas = np.array([[0.20560974, 0.33556297, -0.35068282, 0.35612896, 0.41754073, 0.03088791, 0.30475676, 0.23613405, 0.20912662, 0.31212646]], dtype=np.float32)
base_cam = np.array([[ 1.0, 0, 0]], dtype=np.float32)
base_sc_trans = np.array([[ 0, 0, 0]], dtype=np.float32)
base_params = np.concatenate([base_pose_emb, base_cam, base_betas, base_sc_trans], axis=1)
base_params = tf.Variable(base_params, name="base_params", dtype=tf.float32)
prev_pred = tf.tile(base_params, [self.batch_size, 1])
### FC layers
for i in np.arange(self.num_stages):
curr_state = tf.concat([res_img_ft, prev_pred], 1)
if i == 0:
delta_pred = FC_layer(curr_state, l_neurons=2048, is_training=self.is_training, reuse=False)
else:
delta_pred = FC_layer(curr_state, l_neurons=2048, is_training=self.is_training, reuse=True)
# Curr pred
curr_pred = prev_pred + delta_pred
prev_pred = curr_pred
### Final output
net_pred = curr_pred
### Theta/Pose
self.pred_pose_emb = tf.math.tanh( net_pred[:, :emb_size], name='tanh_emb') ### Nxemb_size
### Betas/Shape
self.pred_betas = net_pred[:,emb_size+3:emb_size+13] ### Nx10
### Global Camera/person orientation
self.pred_cam_axan = tf.math.tanh(net_pred[:, emb_size:emb_size+3], name='tanh_cam') * PI ### Nx3
### Scale and Trans
mean_scale = np.full((self.batch_size, 1), 0.8*cfg.IMG_H, dtype=np.float32)
var_scale = mean_scale/3
self.pred_scale = mean_scale + ( tf.math.tanh(net_pred[:, emb_size+13:emb_size+14], name='tanh_scale') * var_scale ) ### Nx1
self.pred_trans = tf.math.tanh(net_pred[:, emb_size+14:], name='tanh_trans') * (cfg.IMG_W/4) ### Nx2
self.pred_sc_trans = tf.concat([self.pred_scale, self.pred_trans],axis=1) ### Nx3
def setup_pose_emb_layer(self):
""" Pose-prior module, [Pose_emb,Cam] -> Pose. """
with tf.variable_scope('AAE_Decoder', reuse=tf.AUTO_REUSE):
fc_out = tf.layers.dense(self.pred_pose_emb, 512, activation=tf.nn.relu)
fc_out = tf.layers.dense(fc_out, 1024, activation=tf.nn.relu)
fc_out = tf.layers.dense(fc_out, 1024, activation=tf.nn.relu)
theta_dec = tf.layers.dense(fc_out, 23*3)
self.repose = theta_dec ### Nx23x3
self.pred_pose = tf.concat( (self.pred_cam_axan, self.repose), axis = 1 ) ### Nx24x3
def setup_smpl_layers(self):
""" SMPL + Projection module, [Theta, Beta, Cam]-> [Mesh, J3D, J2D]. """
smpl = SmplTPoseLayer(theta_in_rodrigues=False, theta_is_perfect_rotmtx=True)
offsets = tf.zeros(None, 1) ### Nx1
zero_trans = tf.zeros_like(self.pred_cam_axan) ### Nx3
### Pred SMPL out
pred_pose_reshape = tf.reshape(batch_rodrigues(tf.reshape(self.pred_pose, [-1, 3])), [-1, 24, 3, 3]) ### Nx24x3x3
self.cam_smpl_out = smpl([pred_pose_reshape, self.pred_betas, zero_trans, offsets])
## Raw Vertices [in world space]
self.pred_verts = self.cam_smpl_out[0] # Nx6890x3
## Raw Joints 3d [in world space]
self.pred_j3d = self.cam_smpl_out[1] # Nx24x3
### Scale and Trans
if(cfg.PRED_DYN_SCALE_AND_ALIGN):
## For known cropping [200/224]
self.scaled_pred_verts, self.scaled_pred_j3d, self.app_scale_pred, self.app_trans_pred = utils.tf_dyn_scale_and_align(vertices=self.pred_verts, joints_3d=self.pred_j3d, scale=200, add_trans=0)
self.app_sc_trans_pred = tf.concat([self.app_scale_pred, self.app_trans_pred], axis=1)
else:
## Apply predicted scale and trans
self.scaled_pred_verts, self.scaled_pred_j3d = utils.for_tpix_tf_do_scale_and_align(vertices=self.pred_verts, joints_3d=self.pred_j3d, scale=self.pred_scale, trans=self.pred_trans)
### Project onto 2D for Joints2D
self.pred_j2d = utils.tf_orthographic_project(self.scaled_pred_j3d) # Nx24x2
#self.pred_j2d = utils.tf_align_with_image_j2d(self.pred_j2d, self.in_img.shape[1], self.in_img.shape[2])
def setup_cam_mesh_relation_module(self):
""" Mesh to Image relation + Reflectional Symmetry module. [Vtx, Img] -> [Vtx_clr, Vtx_clr_symm] """
### Unprocess image
self.denorm_image = utils.denormalize_image(self.in_img)
### Occlusion-aware weights
pred_camfront_occ_resolved = utils.get_occ_aware_cam_facing_mask(self.scaled_pred_verts, self.batch_size)
pred_img_clr_picked = utils.colour_pick_img(self.denorm_image, self.scaled_pred_verts, self.batch_size)
pred_img_clr_picked_resolved = tf.multiply(pred_img_clr_picked, pred_camfront_occ_resolved)
### Apply Reflectional Symmetry
self.pred_vclr_cm = pred_img_clr_picked
self.pred_vclr_cm_symm = utils.apply_ref_symmetry(pred_img_clr_picked_resolved, pred_camfront_occ_resolved, self.batch_size)
def setup_renderer_layer(self):
""" Rendering Module, Init for differentiable-renderers. """
MESH_PROP_FACES_FL = './assets/smpl_sampling.pkl'
with open(os.path.join(os.path.dirname(__file__), MESH_PROP_FACES_FL), 'rb') as f:
sampling = pkl.load(f)
M = sampling['meshes']
self.faces = M[0]['f'].astype(np.int32)
self.faces = tf.convert_to_tensor(self.faces,dtype=tf.int32)
bgcolor = tf.zeros(3) ## Black bg
fixed_t = [0.0, 0.0, 0.0]
### View 1, front view
fixed_rt = np.array([1.0, 0.0, 0.0]) * PI
self.renderer = RenderLayer(IMG_W, IMG_H, 3, bgcolor=bgcolor, f=self.faces, camera_f=[IMG_W, IMG_H], camera_c=[IMG_W/2.0, IMG_H/2.0], camera_rt=fixed_rt, camera_t=fixed_t)
### Overlay Renderer
bg_overlay = self.denorm_image
self.renderer_olay = RenderLayer(IMG_W, IMG_H, 3, bgcolor=bg_overlay, f=self.faces, camera_f=[IMG_W, IMG_H], camera_c=[IMG_W/2.0, IMG_H/2.0], camera_rt=fixed_rt, camera_t=fixed_t)
### View 2, -60 deg side view
fixed_rt = np.array([2.72, 0.0, -1.57])
self.renderer2 = RenderLayer(IMG_W, IMG_H, 3, bgcolor=bgcolor, f=self.faces, camera_f=[IMG_W, IMG_H], camera_c=[IMG_W/2.0, IMG_H/2.0], camera_rt=fixed_rt, camera_t=fixed_t)
'''
### View 3, +60 deg side view
#fixed_rt = np.array([ 2.72, 0.0, 1.57])
self.renderer3 = RenderLayer(IMG_W, IMG_H, 3, bgcolor=bgcolor, f=self.faces, camera_f=[IMG_W, IMG_H], camera_c=[IMG_W/2.0, IMG_H/2.0], camera_rt=fixed_rt, camera_t=fixed_t)
'''
########
def call_main_render_layer(self, verts, vclr):
""" Render front view, [Vtx, Vtx_clr] -> [Ren_img] """
return self.renderer.call(v=verts, vc=vclr)
def call_overlay_render_layer(self, verts):
""" Render Mesh Overlays, [Vtx, Img] -> [Overlay_img] """
fixed_clr_2 = np.array(cfg.overlay_clr).astype(np.float32) #### clr of overlay mesh
vert_norms = dirt_expose.get_vertex_normals(verts, self.faces)
s_norm = tf.reduce_mean(vert_norms, axis=2, keepdims=True)
s_norm = utils.tf_norm(s_norm, axis=1)
overlay_vclr = tf.image.adjust_gamma( tf.tile(s_norm, [1,1,3]) , 0.35) * fixed_clr_2
return [self.renderer_olay.call(v=verts, vc=overlay_vclr, is_img_bg=True), self.renderer2.call(v=verts, vc=overlay_vclr)]
def call_vis_render_layer(self, verts, vclr):
""" Render multiple views, [Vtx, Vtx_clr] -> [ren_V1_img, ....] """
return [self.renderer.call(v=verts, vc=vclr), self.renderer2.call(v=verts, vc=vclr)]#, self.renderer3.call(v=verts, vc=vclr)]
def build_network(self):
""" Setup Arch and initialize sub modules. """
self.setup_cnn_layers()
self.setup_pose_emb_layer()
self.setup_smpl_layers()
self.setup_cam_mesh_relation_module()
self.setup_renderer_layer()
def get_network_nodes(self):
""" Important Nodes to tap into. """
inputs = { "in_img": self.in_img
}
cnn_outs = { "pred_pose": self.pred_pose, "pred_betas": self.pred_betas,
"pred_cam_axan": self.pred_cam_axan , "pred_scale": self.pred_scale,
"pred_trans": self.pred_trans, "pred_sc_trans": self.pred_sc_trans,
}
smpl_outs = { "pred_verts": self.pred_verts, "pred_j3d": self.pred_j3d, "pred_j2d": self.pred_j2d,
"scaled_pred_verts": self.scaled_pred_verts, "scaled_pred_j3d": self.scaled_pred_j3d
}
render_outs = { "renderer": self.renderer
}
cam_mesh_outs = { "pred_vclr_cm": self.pred_vclr_cm, "pred_vclr_cm_symm": self.pred_vclr_cm_symm
}
return { "inputs_and_gt": inputs, "cnn_layer": cnn_outs, "smpl_layer": smpl_outs, "renderer_layer": render_outs, "cam_mesh_module": cam_mesh_outs }
'''
def print_DEBUG_STR(self):
print ("\n\n:::::::: NetModel DEBUG_STR ::::::::\n")
### Can add debug string options here
print ("\n\n")
'''