-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathEasyStart_DMRG.py
222 lines (206 loc) · 12.6 KB
/
EasyStart_DMRG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import os.path as o_path
import matplotlib.pyplot as mp
from termcolor import cprint, colored
import HamiltonianModule as hm
from BasicFunctionsSJR import input_and_check_type, input_and_check_value, \
save_pr, load_pr, print_options, print_sep, plot_square_lattice, input_and_check_type_multiple_items, \
plot_connections_polar
from DMRG_anyH import dmrg_finite_size, sort_positions, positions_set2array
is_from_input = True
is_load_data = False
def print_info_to_be_added(model, method):
print(colored(model, 'cyan') + ' by ' + colored(method, 'cyan') + ' are to be added')
def print_info_ref(topic, ref, url_ref):
print(colored(topic + ': ' + ref, 'cyan') + ' (' + url_ref + ')')
# =========================================================
print('Thanks for using EasyStart_DMRG!' + colored('(v2018.06-1, by S.J Ran)', 'cyan'))
print_sep()
print('For any questions or comments, please leave us messages on GitHub '
'or ResearchGate, \n or email to ' + colored('[email protected]', 'blue'))
print('Important: you need to install ' + colored('numpy, scipy, and matplotlib', 'magenta') + ' in your python')
print('You are more than welcome to use/modify our code for any simulations.')
print('GitHub: https://github.com/ranshiju/TensorNetworkClassLibary')
print('ResearchGate: www.researchgate.net/project/TN-Encoding-and-Applications')
print('If our code helps your project, please cite our TN review: S. J. Ran, et. al, arxiv.org/abs/1708.09213' +
'\n(https://arxiv.org/abs/1708.09213)')
print_sep('Info: coming updates')
print_info_to_be_added('Finite-size square lattices', 'DMRG')
print_info_to_be_added('Finite-size kagome lattices', 'DMRG')
print_info_to_be_added('Infinite-size chains', 'iDMRG/AOP(1D)')
print_info_to_be_added('Infinite square lattice', 'simple-update/AOP(2D)')
print_info_to_be_added('Finite-temperature simulations of 1D/2D systems', 'LTRG/super-orthogonalization/AOP')
print_sep('Info: references')
print_info_ref('DMRG', 'Phys. Rev. Lett. 69, 2863 (1992)',
'https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2863')
print_info_ref('Simple update', 'Phys. Rev. Lett. 101, 090603 (2008)',
'https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.090603')
print_info_ref('AOP (1D)', 'Phys. Rev. E 93, 053310 (2016)',
'https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053310')
print_info_ref('AOP (2D&3D)', 'Phys. Rev. B 96, 155120 (2017)',
'https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.155120')
cprint('If you want to know more about tensor networks, we recommend our review '
'(https://arxiv.org/abs/1708.09213)', 'cyan')
print_sep()
if is_from_input:
para = dict()
print_sep('Start inputting parameters')
print('Note: you can always set all parameters in \"Parameters.py\" and run \"dmrg_finite_size\"')
print('For the models, currently only spin-1/2 Heisenberg models can be simulated')
para['model'] = 'heisenberg'
para['jxy'] = input_and_check_type((int, float), 'jxy')
para['jz'] = input_and_check_type((int, float), 'jz')
para['hx'] = input_and_check_type((int, float), 'hx')
para['hz'] = input_and_check_type((int, float), 'hz')
print_options(('chain', 'square', 'arbitrary'), [1, 2, 3], welcome='For the lattice, please chose: ')
tmp = input_and_check_value([1, 2, 3], ('chain', 'square', 'arbitrary'), 'lattice', 'para')
para['lattice'] = ['chain', 'square', 'arbitrary'][tmp-1]
if para['lattice'] == 'chain':
print('For the length of the chain')
para['l'] = input_and_check_type(int, 'l')
elif para['lattice'] == 'square':
para['square_width'] = input_and_check_type(int, 'square_width')
para['square_height'] = input_and_check_type(int, 'square_height')
para['l'] = para['square_width'] * para['square_height']
plot_square_lattice(para['square_width'], para['square_height'], True,
'The sites are numbered in this way (close this figure to continue ...)',
'.\\fig_dmrg\\')
elif para['lattice'] == 'arbitrary':
print('Setting the positions of the two-body interactions')
print('Each time, if you input ' + colored('n1,n2', 'cyan') + ' or ' + colored('(n1,n2)', 'cyan') +
', it means to add an interaction between the n1-th and n2-th sites')
print('For example: ' + colored('1,2', 'cyan'))
print('NOTE: input ' + colored('integers', 'cyan') + ' and make sure ' +
colored('0 $\leq$ n1 < n2', 'cyan') + ', or the input will be ' + colored('invalid', 'magenta'))
cprint('These numbers determine how the sites are located in the MPS, '
'so optimize the numbering if possible', 'cyan')
position_set = input_and_check_type_multiple_items(tuple, lambda values: values[0] < values[1],
'positions_h2 (input ' + colored('-1', 'cyan') +
' to finish)', is_print=True)
para['positions_h2'] = positions_set2array(position_set)
para['positions_h2'] = sort_positions(para['positions_h2']).astype(int)
print('The interactions terms you have input are (invalid sites are automatically removed):')
cprint(str(para['positions_h2']), 'cyan')
plot_connections_polar(para['positions_h2'], True, 'Close the figure to continue', '.\\fig_dmrg')
para['l'] = np.max(para['positions_h2']) + 1
para['bound_cond'] = ''
if para['lattice'] != 'arbitrary':
print_options(('open BC', 'periodic BC'), [1, 2], welcome='For the boundary condition (BC), please chose: ')
tmp = input_and_check_value([1, 2], ('open', 'periodic'), 'bound_cond', 'para')
para['bound_cond'] = (('open', 'periodic')[tmp-1])
print('For the dimension cut-off (if you are not sure what to input, input -1)')
para['chi'] = input_and_check_type(int, 'chi')
if para['chi'] < 0:
para['chi'] = max(min(para['l']*2, 128), 16)
print('You have set ' + colored('para[\'chi\'] = ' + str(para['chi']), 'cyan'))
elif para['chi'] > 128:
cprint('Note: chi is quite large (=%d), it can be slow. '
'Unless you are confident, suggest to choose a chi no larger than 128', 'cyan')
print('Other parameters are set as default ...')
para['spin'] = 'half'
op = hm.spin_operators(para['spin'])
para['op'] = [op['id'], op['sx'], op['sy'], op['sz'], op['su'], op['sd'], -para['hx']*op['sx']
- para['hz']*op['sz']]
para['d'] = 2 # Physical bond dimension
para['sweep_time'] = 500 # sweep time
# Fixed parameters
para['if_print_detail'] = False
para['tau'] = 1e-3 # shift to ensure the GS energy has the largest magnitude
para['eigs_tol'] = 1e-10
para['break_tol'] = 1e-8 # tolerance for breaking the loop
para['is_real'] = True
para['dt_ob'] = 5 # in how many sweeps, observe to check the convergence
para['ob_position'] = (para['l']/2).__int__() # to check the convergence, chose a position to observe
para['data_path'] = '.\\data_dmrg\\'
if para['lattice'] is 'square':
para['positions_h2'] = hm.positions_nearest_neighbor_square(
para['square_width'], para['square_height'], para['bound_cond'])
para['data_exp'] = 'square' + '(%d,%d)' % (para['square_width'], para['square_height']) + \
'N%d_j(%g,%g)_h(%g,%g)_chi%d' % (para['l'], para['jxy'], para['jz'], para['hx'],
para['hz'], para['chi']) + para['bound_cond']
elif para['lattice'] is 'chain':
para['positions_h2'] = hm.positions_nearest_neighbor_1d(para['l'], para['bound_cond'])
para['data_exp'] = 'chainN%d_j(%g,%g)_h(%g,%g)_chi%d' % \
(para['l'], para['jxy'], para['jz'], para['hx'],
para['hz'], para['chi']) + para['bound_cond']
elif para['lattice'] is 'arbitrary':
para['data_exp'] = 'arbitraryN%d_j(%g,%g)_h(%g,%g)_chi%d' % \
(para['l'], para['jxy'], para['jz'], para['hx'],
para['hz'], para['chi']) + para['bound_cond']
para['index1'] = np.mat(np.arange(0, para['l']))
para['index1'] = np.vstack((para['index1'], 6 * np.ones((1, para['l'])))).T.astype(int)
para['index2'] = hm.interactions_position2full_index_heisenberg_two_body(para['positions_h2'])
para['coeff1'] = np.ones((para['l'], 1))
para['coeff2'] = np.ones((para['positions_h2'].shape[0]*3, 1))
for n in range(0, para['positions_h2'].shape[0]):
para['coeff2'][n * 3, 0] = para['jxy']
para['coeff2'][n * 3 + 1, 0] = para['jxy']
para['coeff2'][n * 3 + 2, 0] = para['jz']
else:
from Parameters import generate_parameters_dmrg
para = generate_parameters_dmrg()
data_full_name = para['data_path'] + para['data_exp'] + '.pr'
save_pr('.\\para_dmrg\\', '_para.pr', (para,), ('para',))
print('The parameter have been saved as ' + colored('.\\para_dmrg\_para.pr', 'green'))
print_sep('Start DMRG simulation')
if is_load_data and o_path.isfile(data_full_name) and (para['lattice'] in ('chain', 'square')):
print('The data exists in ' + para['data_path'].rstrip("\\") + '. Load directly...')
ob, A = load_pr(data_full_name, ('ob', 'A'))
else:
ob, A, info, para = dmrg_finite_size(para)
save_pr(para['data_path'], para['data_exp'] + '.pr', (ob, A, info, para), ('ob', 'A', 'info', 'para'))
print('The data have been saved in ' + colored(para['data_path'].rstrip("\\"), 'green'))
print_sep('DMRG simulation finished')
if is_from_input:
end_plot = False
while not end_plot:
print('Which property are you interested in:')
options = ('bond energies', 'magnetization', 'entanglement entropy', 'exit')
print_options(options, list(range(1, options.__len__())) + [0])
x = input_and_check_value(list(range(1, options.__len__())) + [0], options)
if x == 0:
end_plot = True
elif x == 1: # plot bond energies
if para['lattice'] == 'chain':
nh1 = ob['eb'].size - (para['bound_cond'] == 'periodic')
mp.plot(range(0, nh1), ob['eb'][:nh1], 'bo')
if para['bound_cond'] == 'periodic':
mp.plot(np.array([0, nh1-1]), ob['eb'][-1] * np.ones((2,)), 'r--.', linewidth=0.5)
mp.text(A.length / 2, ob['eb'][-1] - 0.0002, 'Eb(0, %d) = %g' % (A.length - 1, ob['eb'][-1]),
fontsize=10, verticalalignment="top", horizontalalignment="center")
elif para['lattice'] == 'square' or 'arbitrary':
nh1 = ob['eb'].size
f1, = mp.plot(range(1, nh1 + 1), ob['eb'][:nh1], 'bo')
mp.title('Bond energies (nearest-neighbor correlators)')
mp.xlabel('lattice bond')
mp.ylabel(r'$\langle \hat{s}_n \hat{s}_{n+1} \rangle$')
print('Bond energies = ')
cprint(str(ob['eb'].T), 'cyan')
print('Energy per site = ' + colored(str(ob['e_per_site']), 'cyan'))
if para['lattice'] == 'square':
print('NOTE: check ' + colored('para[positions_h2]', 'cyan') + 'to see how the bonds are numbered')
elif x == 2: # plot magnetization
mp.subplot(2, 1, 1)
f1, = mp.plot(range(1, A.length + 1), ob['mx'], '-ro')
mp.ylabel(r'$\langle \hat{s}^x \rangle$')
# mp.legend(handles=[f1, ], labels=[r'$\langle \hat{s}_n^x \rangle$'], loc='best')
mp.subplot(2, 1, 2)
f2, = mp.plot(range(1, A.length + 1), ob['mz'], '--bs')
mp.xlabel('lattice site')
mp.ylabel(r'$\langle \hat{s}^z \rangle$')
# mp.legend(handles=[f2, ], labels=[r'$\langle \hat{s}_n^z \rangle$'], loc='best')
print('mx = ')
print(str(ob['mx'].T))
print('mz = ')
print(str(ob['mz'].T))
if para['lattice'] == 'square':
print('Check the numbers of sites in .\\fig_dmrg\\' + para['lattice']
+ '(%d,%d).png' % (para['square_width'], para['square_height']))
elif x == 3:
mp.plot(range(1, A.length), A.ent, '--or')
mp.xlabel('lattice bond')
mp.ylabel('entanglement entropy')
print('entanglement entropy = ')
print(str(A.ent.T))
mp.show()
print_sep('Thanks again for using EasyStartDMRG!')