Skip to content

Commit 9afdc25

Browse files
authored
Pandas-friendly column names (#443)
* CI95% --> CI95 * p-* --> p_* (also U-* and W-*) * CI[97.5%] --> CI97.5 * mean(A) --> mean_A (also std) * T-test --> T_test (index) * effect sizes * updated notebooks * Fix the Github Action CI for Python tests (#445) * GH Action on main branch instead of master and develop * bump actions/upload-artifact@v2 to v4 * install doc requirements from .toml * bump actions/checkout@v2 --> v4 * bump actions/setup-python@v1 --> v5 * move pip-install-docs back to only run during docs build * typo 3.8 --> 3.9 * bump codecov/codecov-action@v1 --> v4 * remove platform specification from docs-artifact * CI95% --> CI95 * p-* --> p_* (also U-* and W-*) * CI[97.5%] --> CI97.5 * mean(A) --> mean_A (also std) * T-test --> T_test (index) * effect sizes * updated notebooks
1 parent e98ad3f commit 9afdc25

31 files changed

+748
-801
lines changed

README.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ Click on the link below and navigate to the notebooks/ folder to run a collectio
157157
:widths: auto
158158

159159
====== ===== ============= ======= ============= ========= ====== =======
160-
T dof alternative p-val CI95% cohen-d BF10 power
160+
T dof alternative p_val CI95 cohen_d BF10 power
161161
====== ===== ============= ======= ============= ========= ====== =======
162162
-3.401 58 two-sided 0.001 [-1.68 -0.43] 0.878 26.155 0.917
163163
====== ===== ============= ======= ============= ========= ====== =======
@@ -175,7 +175,7 @@ Click on the link below and navigate to the notebooks/ folder to run a collectio
175175
:widths: auto
176176

177177
=== ===== =========== ======= ====== =======
178-
n r CI95% p-val BF10 power
178+
n r CI95 p_val BF10 power
179179
=== ===== =========== ======= ====== =======
180180
30 0.595 [0.3 0.79] 0.001 69.723 0.950
181181
=== ===== =========== ======= ====== =======
@@ -196,7 +196,7 @@ Click on the link below and navigate to the notebooks/ folder to run a collectio
196196
:widths: auto
197197

198198
=== ===== =========== ======= =======
199-
n r CI95% p-val power
199+
n r CI95 p_val power
200200
=== ===== =========== ======= =======
201201
30 0.576 [0.27 0.78] 0.001 0.933
202202
=== ===== =========== ======= =======
@@ -244,7 +244,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
244244
:widths: auto
245245

246246
======== ======= ==== ===== ======= ======= =======
247-
Source SS DF MS F p-unc np2
247+
Source SS DF MS F p_unc np2
248248
======== ======= ==== ===== ======= ======= =======
249249
Group 5.460 1 5.460 5.244 0.023 0.029
250250
Within 185.343 178 1.041 nan nan nan
@@ -263,7 +263,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
263263
:widths: auto
264264

265265
======== ======= ==== ===== ======= ======= ======= =======
266-
Source SS DF MS F p-unc ng2 eps
266+
Source SS DF MS F p_unc ng2 eps
267267
======== ======= ==== ===== ======= ======= ======= =======
268268
Time 7.628 2 3.814 3.913 0.023 0.04 0.999
269269
Error 115.027 118 0.975 nan nan nan nan
@@ -287,7 +287,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
287287
:widths: auto
288288

289289
========== ======= ======= ======== ============ ====== ====== ============= ======= ======== ========== ====== ========
290-
Contrast A B Paired Parametric T dof alternative p-unc p-corr p-adjust BF10 hedges
290+
Contrast A B Paired Parametric T dof alternative p_unc p_corr p_adjust BF10 hedges
291291
========== ======= ======= ======== ============ ====== ====== ============= ======= ======== ========== ====== ========
292292
Time August January True True -1.740 59.000 two-sided 0.087 0.131 fdr_bh 0.582 -0.328
293293
Time August June True True -2.743 59.000 two-sided 0.008 0.024 fdr_bh 4.232 -0.483
@@ -310,7 +310,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
310310
:widths: auto
311311

312312
=========== ===== ===== ===== ===== ===== ======= ===== =======
313-
Source SS DF1 DF2 MS F p-unc np2 eps
313+
Source SS DF1 DF2 MS F p_unc np2 eps
314314
=========== ===== ===== ===== ===== ===== ======= ===== =======
315315
Group 5.460 1 58 5.460 5.052 0.028 0.080 nan
316316
Time 7.628 2 116 3.814 4.027 0.020 0.065 0.999
@@ -334,7 +334,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
334334
:widths: auto
335335

336336
=== === ======== ============= === ===== ============= ======= ====== =======
337-
X Y method alternative n r CI95% p-unc BF10 power
337+
X Y method alternative n r CI95 p_unc BF10 power
338338
=== === ======== ============= === ===== ============= ======= ====== =======
339339
X Y pearson two-sided 30 0.366 [0.01 0.64] 0.047 1.500 0.525
340340
X Z pearson two-sided 30 0.251 [-0.12 0.56] 0.181 0.534 0.272
@@ -374,7 +374,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
374374
:widths: auto
375375

376376
========= ====== ===== ====== ====== ===== ======== ========== ===========
377-
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
377+
names coef se T pval r2 adj_r2 CI2.5 CI97.5
378378
========= ====== ===== ====== ====== ===== ======== ========== ===========
379379
Intercept 4.650 0.841 5.530 0.000 0.139 0.076 2.925 6.376
380380
X 0.143 0.068 2.089 0.046 0.139 0.076 0.003 0.283
@@ -394,7 +394,7 @@ The `pingouin.normality` function works with lists, arrays, or pandas DataFrame
394394
:widths: auto
395395

396396
======== ====== ===== ====== ========== =========== =====
397-
path coef se pval CI[2.5%] CI[97.5%] sig
397+
path coef se pval CI2.5 CI97.5 sig
398398
======== ====== ===== ====== ========== =========== =====
399399
Z ~ X 0.103 0.075 0.181 -0.051 0.256 No
400400
Y ~ Z 0.018 0.171 0.916 -0.332 0.369 No

docs/index.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ Quick start
135135
:widths: auto
136136

137137
====== ===== ============= ======= ============= ========= ====== =======
138-
T dof alternative p-val CI95% cohen-d BF10 power
138+
T dof alternative p_val CI95 cohen_d BF10 power
139139
====== ===== ============= ======= ============= ========= ====== =======
140140
-3.401 58 two-sided 0.001 [-1.68 -0.43] 0.878 26.155 0.917
141141
====== ===== ============= ======= ============= ========= ====== =======
@@ -153,7 +153,7 @@ Quick start
153153
:widths: auto
154154

155155
=== ===== =========== ======= ====== =======
156-
n r CI95% p-val BF10 power
156+
n r CI95 p_val BF10 power
157157
=== ===== =========== ======= ====== =======
158158
30 0.595 [0.3 0.79] 0.001 69.723 0.950
159159
=== ===== =========== ======= ====== =======
@@ -174,7 +174,7 @@ Quick start
174174
:widths: auto
175175

176176
=== ===== =========== ======= =======
177-
n r CI95% p-val power
177+
n r CI95 p_val power
178178
=== ===== =========== ======= =======
179179
30 0.576 [0.27 0.78] 0.001 0.933
180180
=== ===== =========== ======= =======
@@ -235,7 +235,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
235235
:widths: auto
236236

237237
======== ======= ==== ===== ======= ======= =======
238-
Source SS DF MS F p-unc np2
238+
Source SS DF MS F p_unc np2
239239
======== ======= ==== ===== ======= ======= =======
240240
Group 5.460 1 5.460 5.244 0.023 0.029
241241
Within 185.343 178 1.041 nan nan nan
@@ -254,7 +254,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
254254
:widths: auto
255255

256256
======== ======= ==== ===== ======= ======= ======= =======
257-
Source SS DF MS F p-unc ng2 eps
257+
Source SS DF MS F p_unc ng2 eps
258258
======== ======= ==== ===== ======= ======= ======= =======
259259
Time 7.628 2 3.814 3.913 0.023 0.04 0.999
260260
Error 115.027 118 0.975 nan nan nan nan
@@ -278,7 +278,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
278278
:widths: auto
279279

280280
========== ======= ======= ======== ============ ====== ====== ============= ======= ======== ========== ====== ========
281-
Contrast A B Paired Parametric T dof alternative p-unc p-corr p-adjust BF10 hedges
281+
Contrast A B Paired Parametric T dof alternative p_unc p_corr p_adjust BF10 hedges
282282
========== ======= ======= ======== ============ ====== ====== ============= ======= ======== ========== ====== ========
283283
Time August January True True -1.740 59.000 two-sided 0.087 0.131 fdr_bh 0.582 -0.328
284284
Time August June True True -2.743 59.000 two-sided 0.008 0.024 fdr_bh 4.232 -0.483
@@ -301,7 +301,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
301301
:widths: auto
302302

303303
=========== ===== ===== ===== ===== ===== ======= ===== =======
304-
Source SS DF1 DF2 MS F p-unc np2 eps
304+
Source SS DF1 DF2 MS F p_unc np2 eps
305305
=========== ===== ===== ===== ===== ===== ======= ===== =======
306306
Group 5.460 1 58 5.460 5.052 0.028 0.080 nan
307307
Time 7.628 2 116 3.814 4.027 0.020 0.065 0.999
@@ -325,7 +325,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
325325
:widths: auto
326326

327327
=== === ======== ============= === ===== ============= ======= ====== =======
328-
X Y method alternative n r CI95% p-unc BF10 power
328+
X Y method alternative n r CI95 p_unc BF10 power
329329
=== === ======== ============= === ===== ============= ======= ====== =======
330330
X Y pearson two-sided 30 0.366 [0.01 0.64] 0.047 1.500 0.525
331331
X Z pearson two-sided 30 0.251 [-0.12 0.56] 0.181 0.534 0.272
@@ -365,7 +365,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
365365
:widths: auto
366366

367367
========= ====== ===== ====== ====== ===== ======== ========== ===========
368-
names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]
368+
names coef se T pval r2 adj_r2 CI2.5 CI97.5
369369
========= ====== ===== ====== ====== ===== ======== ========== ===========
370370
Intercept 4.650 0.841 5.530 0.000 0.139 0.076 2.925 6.376
371371
X 0.143 0.068 2.089 0.046 0.139 0.076 0.003 0.283
@@ -385,7 +385,7 @@ The :py:func:`pingouin.normality` function works with lists, arrays, or pandas D
385385
:widths: auto
386386

387387
======== ====== ===== ====== ========== =========== =====
388-
path coef se pval CI[2.5%] CI[97.5%] sig
388+
path coef se pval CI2.5 CI97.5 sig
389389
======== ====== ===== ====== ========== =========== =====
390390
Z ~ X 0.103 0.075 0.181 -0.051 0.256 No
391391
Y ~ Z 0.018 0.171 0.916 -0.332 0.369 No

0 commit comments

Comments
 (0)