|
| 1 | +apiVersion: ray.io/v1 |
| 2 | +kind: RayCluster |
| 3 | +metadata: |
| 4 | + name: ray-label-cluster |
| 5 | +spec: |
| 6 | + enableInTreeAutoscaling: true |
| 7 | + autoscalerOptions: |
| 8 | + version: v2 |
| 9 | + upscalingMode: Default |
| 10 | + idleTimeoutSeconds: 600 |
| 11 | + imagePullPolicy: Always |
| 12 | + securityContext: {} |
| 13 | + env: [] |
| 14 | + envFrom: [] |
| 15 | + resources: |
| 16 | + limits: |
| 17 | + cpu: "500m" |
| 18 | + memory: "512Mi" |
| 19 | + requests: |
| 20 | + cpu: "500m" |
| 21 | + memory: "512Mi" |
| 22 | + headGroupSpec: |
| 23 | + labels: |
| 24 | + ray.io/region: us-central2 |
| 25 | + resources: |
| 26 | + cpu: "0" |
| 27 | + template: |
| 28 | + spec: |
| 29 | + containers: |
| 30 | + - name: ray-head |
| 31 | + image: rayproject/ray:nightly |
| 32 | + ports: |
| 33 | + - containerPort: 6379 |
| 34 | + name: gcs |
| 35 | + - containerPort: 8265 |
| 36 | + name: dashboard |
| 37 | + - containerPort: 10001 |
| 38 | + name: client |
| 39 | + resources: |
| 40 | + limits: |
| 41 | + cpu: "1" |
| 42 | + memory: "2G" |
| 43 | + requests: |
| 44 | + cpu: "1" |
| 45 | + memory: "2G" |
| 46 | + volumeMounts: |
| 47 | + - mountPath: /home/ray/samples |
| 48 | + name: ray-example-configmap |
| 49 | + volumes: |
| 50 | + - name: ray-example-configmap |
| 51 | + configMap: |
| 52 | + name: ray-example |
| 53 | + defaultMode: 0777 |
| 54 | + items: |
| 55 | + - key: example_task.py |
| 56 | + path: example_task.py |
| 57 | + - key: example_actor.py |
| 58 | + path: example_actor.py |
| 59 | + - key: example_placement_group.py |
| 60 | + path: example_placement_group.py |
| 61 | + workerGroupSpecs: |
| 62 | + - replicas: 1 |
| 63 | + minReplicas: 1 |
| 64 | + maxReplicas: 10 |
| 65 | + groupName: large-cpu-group |
| 66 | + labels: |
| 67 | + cpu-family: intel |
| 68 | + ray.io/market-type: on-demand |
| 69 | + rayStartParams: {} |
| 70 | + template: |
| 71 | + spec: |
| 72 | + containers: |
| 73 | + - name: ray-worker |
| 74 | + image: rayproject/ray:nightly |
| 75 | + resources: |
| 76 | + limits: |
| 77 | + cpu: "2" |
| 78 | + memory: "4G" |
| 79 | + requests: |
| 80 | + cpu: "2" |
| 81 | + memory: "4G" |
| 82 | + nodeSelector: |
| 83 | + cloud.google.com/machine-family: "N4" |
| 84 | + - replicas: 0 |
| 85 | + minReplicas: 0 |
| 86 | + maxReplicas: 10 |
| 87 | + groupName: accelerator-group |
| 88 | + labels: |
| 89 | + ray.io/market-type: on-demand |
| 90 | + ray.io/region: us-central2 |
| 91 | + rayStartParams: {} |
| 92 | + template: |
| 93 | + spec: |
| 94 | + containers: |
| 95 | + - name: ray-worker |
| 96 | + image: rayproject/ray:nightly-gpu |
| 97 | + resources: |
| 98 | + limits: |
| 99 | + cpu: "1" |
| 100 | + nvidia.com/gpu: "1" |
| 101 | + memory: "1G" |
| 102 | + requests: |
| 103 | + cpu: "1" |
| 104 | + nvidia.com/gpu: "1" |
| 105 | + memory: "1G" |
| 106 | + nodeSelector: |
| 107 | + cloud.google.com/gke-spot: "true" |
| 108 | + cloud.google.com/gke-accelerator: "nvidia-tesla-a100" |
| 109 | + - replicas: 0 |
| 110 | + minReplicas: 0 |
| 111 | + maxReplicas: 5 |
| 112 | + groupName: spot-group |
| 113 | + labels: |
| 114 | + cpu-family: amd |
| 115 | + ray.io/market-type: spot |
| 116 | + rayStartParams: {} |
| 117 | + template: |
| 118 | + spec: |
| 119 | + containers: |
| 120 | + - name: ray-worker |
| 121 | + image: rayproject/ray:nightly |
| 122 | + resources: |
| 123 | + limits: |
| 124 | + cpu: "1" |
| 125 | + memory: "1G" |
| 126 | + requests: |
| 127 | + cpu: "1" |
| 128 | + memory: "1G" |
| 129 | + nodeSelector: |
| 130 | + cloud.google.com/gke-spot: "true" |
| 131 | +--- |
| 132 | +apiVersion: v1 |
| 133 | +kind: ConfigMap |
| 134 | +metadata: |
| 135 | + name: ray-example |
| 136 | +data: |
| 137 | + example_task.py: | |
| 138 | + import ray |
| 139 | + @ray.remote(num_cpus=1, label_selector={"ray.io/market-type": "on-demand", "cpu-family": "in(intel,amd)"}) |
| 140 | + def test_task(): |
| 141 | + pass |
| 142 | + ray.init() |
| 143 | + ray.get(test_task.remote()) |
| 144 | + example_actor.py: | |
| 145 | + import ray |
| 146 | + @ray.remote(num_gpus=1, label_selector={"ray.io/accelerator-type": "A100"}) |
| 147 | + class Actor: |
| 148 | + def ready(self): |
| 149 | + return True |
| 150 | + ray.init() |
| 151 | + my_actor = Actor.remote() |
| 152 | + ray.get(my_actor.ready.remote()) |
| 153 | + example_placement_group.py: | |
| 154 | + import ray |
| 155 | + from ray.util.placement_group import placement_group |
| 156 | + ray.init() |
| 157 | + pg = placement_group( |
| 158 | + [{"CPU": 1}] * 2, |
| 159 | + bundle_label_selector=[{"ray.io/market-type": "spot", "ray.io/region": "!us-central2"},] * 2, strategy="SPREAD" |
| 160 | + ) |
| 161 | + ray.get(pg.ready()) |
0 commit comments