|
| 1 | +import math |
| 2 | +import numpy as np |
| 3 | +import random |
| 4 | +from common import * |
| 5 | +from objectbox.query_builder import QueryBuilder |
| 6 | + |
| 7 | + |
| 8 | +def _find_expected_nn(points: np.ndarray, query: np.ndarray, n: int): |
| 9 | + """ Given a set of points of shape (N, P) and a query of shape (P), finds the n points nearest to query. """ |
| 10 | + |
| 11 | + assert points.ndim == 2 and query.ndim == 1 |
| 12 | + assert points.shape[1] == query.shape[0] |
| 13 | + |
| 14 | + d = np.linalg.norm(points - query, axis=1) # Euclidean distance |
| 15 | + return np.argsort(d)[:n] |
| 16 | + |
| 17 | + |
| 18 | +def _test_random_points(num_points: int, num_query_points: int, seed: Optional[int] = None): |
| 19 | + """ Generates random points in a 2d plane; checks the queried NN against the expected. """ |
| 20 | + |
| 21 | + print(f"Test random points; Points: {num_points}, Query points: {num_query_points}, Seed: {seed}") |
| 22 | + |
| 23 | + k = 10 |
| 24 | + |
| 25 | + if seed is not None: |
| 26 | + np.random.seed(seed) |
| 27 | + |
| 28 | + points = np.random.rand(num_points, 2).astype(np.float32) |
| 29 | + |
| 30 | + db = create_test_objectbox() |
| 31 | + |
| 32 | + # Init and seed DB |
| 33 | + box = objectbox.Box(db, VectorEntity) |
| 34 | + |
| 35 | + print(f"Seeding DB with {num_points} points...") |
| 36 | + objects = [] |
| 37 | + for i in range(points.shape[0]): |
| 38 | + object_ = VectorEntity() |
| 39 | + object_.name = f"point_{i}" |
| 40 | + object_.vector = points[i] |
| 41 | + objects.append(object_) |
| 42 | + box.put(*objects) |
| 43 | + print(f"DB seeded with {box.count()} random points!") |
| 44 | + |
| 45 | + assert box.count() == num_points |
| 46 | + |
| 47 | + # Generate a random list of query points |
| 48 | + query_points = np.random.rand(num_query_points, 2).astype(np.float32) |
| 49 | + |
| 50 | + # Iterate query points, and compare expected result with OBX result |
| 51 | + print(f"Running {num_query_points} searches...") |
| 52 | + for i in range(query_points.shape[0]): |
| 53 | + query_point = query_points[i] |
| 54 | + |
| 55 | + # Find the ground truth (brute force) |
| 56 | + expected_result = _find_expected_nn(points, query_point, k) + 1 # + 1 because OBX IDs start from 1 |
| 57 | + assert len(expected_result) == k |
| 58 | + |
| 59 | + # Run ANN with OBX |
| 60 | + query_builder = QueryBuilder(db, box) |
| 61 | + query_builder.nearest_neighbors_f32(VectorEntity.get_property("vector")._id, query_point, k) |
| 62 | + query = query_builder.build() |
| 63 | + obx_result = [id_ for id_, score in query.find_ids_with_scores()] # Ignore score |
| 64 | + assert len(obx_result) == k |
| 65 | + |
| 66 | + # We would like at least half of the expected results, to be returned by the search (in any order) |
| 67 | + # Remember: it's an approximate search! |
| 68 | + search_score = len(np.intersect1d(expected_result, obx_result)) / k |
| 69 | + assert search_score >= 0.5 # TODO likely could be increased |
| 70 | + |
| 71 | + print(f"Done!") |
| 72 | + |
| 73 | + |
| 74 | +def test_random_points(): |
| 75 | + _test_random_points(num_points=100, num_query_points=10, seed=10) |
| 76 | + _test_random_points(num_points=100, num_query_points=10, seed=11) |
| 77 | + _test_random_points(num_points=100, num_query_points=10, seed=12) |
| 78 | + _test_random_points(num_points=100, num_query_points=10, seed=13) |
| 79 | + _test_random_points(num_points=100, num_query_points=10, seed=14) |
| 80 | + _test_random_points(num_points=100, num_query_points=10, seed=15) |
0 commit comments