-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpost_hoc_lib.py
320 lines (265 loc) · 12 KB
/
post_hoc_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""
post_hoc_lib.py
Library for users to debias their own models
"""
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.metrics import roc_auc_score
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(0)
def val_model(model, loader, criterion, protected_index, prediction_index, lam=0.75, bias_measure='aod'):
"""Validate model on loader with criterion function"""
y_true, y_pred, y_prot = [], [], []
with torch.no_grad():
for inputs, labels in loader:
inputs, labels, protected = inputs.to(device), labels[:, prediction_index].float().to(device), labels[:, protected_index].float().to(device)
y_true.append(labels)
y_prot.append(protected)
y_pred.append(torch.sigmoid(model(inputs)[:, 0]))
y_true, y_pred, y_prot = torch.cat(y_true), torch.cat(y_pred), torch.cat(y_prot)
return criterion(y_true, y_pred, y_prot, lam, bias_measure)
def get_best_accuracy(y_true, y_pred, *_):
"""Select threshold that maximizes accuracy"""
threshs = torch.linspace(0, 1, 1001)
best_acc, best_thresh = 0., 0.
for thresh in threshs:
acc = torch.mean(((y_pred > thresh) == y_true).float()).item()
if acc > best_acc:
best_acc, best_thresh = acc, thresh
return best_acc, best_thresh
def compute_bias(y_pred, y_true, priv, metric):
"""Compute bias on the dataset"""
def zero_if_nan(data):
"""Zero if there is a nan"""
return 0. if torch.isnan(data) else data
gtpr_priv = zero_if_nan(y_pred[priv * y_true == 1].mean())
gfpr_priv = zero_if_nan(y_pred[priv * (1-y_true) == 1].mean())
mean_priv = zero_if_nan(y_pred[priv == 1].mean())
gtpr_unpriv = zero_if_nan(y_pred[(1-priv) * y_true == 1].mean())
gfpr_unpriv = zero_if_nan(y_pred[(1-priv) * (1-y_true) == 1].mean())
mean_unpriv = zero_if_nan(y_pred[(1-priv) == 1].mean())
if metric == "spd":
return mean_unpriv - mean_priv
if metric == "aod":
return 0.5 * ((gfpr_unpriv - gfpr_priv) + (gtpr_unpriv - gtpr_priv))
if metric == "eod":
return gtpr_unpriv - gtpr_priv
def get_objective_results(best_thresh):
"""Get the objective results with the best_threshold"""
def _get_results(y_true, y_pred, y_prot, lam, bias_measure):
"""Inner function to be returned"""
rocauc_score = roc_auc_score(y_true.cpu(), y_pred.cpu())
acc = torch.mean(((y_pred > best_thresh) == y_true).float()).item()
bias = compute_bias((y_pred > best_thresh).float().cpu(), y_true.float().cpu(), 1-y_prot.float().cpu(), bias_measure)
obj = lam*abs(bias)+(1-lam)*(1-acc)
return rocauc_score, acc, bias, obj
return _get_results
class Critic(nn.Module):
"""Critic class for adversarial debiasing method"""
def __init__(self, sizein, num_deep=3, hid=32):
super().__init__()
self.fc0 = nn.Linear(sizein, hid)
self.fcs = nn.ModuleList([nn.Linear(hid, hid) for _ in range(num_deep)])
self.dropout = nn.Dropout(0.2)
self.out = nn.Linear(hid, 1)
def forward(self, t):
t = t.reshape(1, -1)
t = self.fc0(t)
for fully_connected in self.fcs:
t = F.relu(fully_connected(t))
t = self.dropout(t)
return self.out(t)
def get_best_objective(y_true, y_pred, y_prot, lam, bias_measure):
"""Find the threshold for the best objective"""
threshs = torch.linspace(0, 1, 501)
best_obj, best_thresh = math.inf, 0.
for thresh in threshs:
acc = torch.mean(((y_pred > thresh) == y_true).float()).item()
bias = compute_bias((y_pred > thresh).float().cpu(), y_true.float().cpu(), 1-y_prot.float().cpu(), bias_measure)
obj = lam*abs(bias)+(1-lam)*(1-acc)
if obj < best_obj:
best_obj, best_thresh = obj, thresh
return best_obj, best_thresh
class DebiasModel(object):
"""
Abstract Base Class for user to overwrite with custom methods
"""
def __init__(self):
self.best_rand_model, self.best_rand_thresh = None, 0.
self.best_adv_model, self.best_adv_thresh = None, 0.
self.lam = 0.75
self.bias_measure = 'aod'
@property
def protected_index(self):
"""index for protected attribute"""
raise NotImplementedError()
@property
def prediction_index(self):
"""index for prediction attribute"""
raise NotImplementedError()
def get_valloader(self):
"""get the valloader"""
raise NotImplementedError()
def get_testloader(self):
"""get the testloader"""
raise NotImplementedError()
def get_model(self):
"""get model and load weights"""
raise NotImplementedError()
def get_last_layer_name(self):
"""get name of last fully connected layer of network."""
raise NotImplementedError()
def _evaluate_model_thresh(self, model, best_thresh, verbose=True):
rocauc_score, best_acc, bias, obj = val_model(
model,
self.get_testloader(),
get_objective_results(best_thresh),
self.protected_index,
self.prediction_index,
self.lam,
self.bias_measure
)
if verbose:
print()
print('-'*20)
print('Model Results')
print('='*20)
print('roc auc', rocauc_score)
print('accuracy with best thresh', best_acc)
print('aod', bias.item())
print('objective', obj.item())
print('-'*20)
print()
return {
'roc_auc': float(rocauc_score),
'accuracy': float(best_acc),
'bias': float(bias.item()),
'objective': float(obj.item())
}
def evaluate_original(self, verbose=True):
"""Evaluate Original Model"""
_, best_thresh = val_model(
self.get_model(),
self.get_valloader(),
get_best_accuracy,
self.protected_index,
self.prediction_index,
self.lam
)
return self._evaluate_model_thresh(self.get_model(), best_thresh, verbose)
def random_debias_model(self, num_rounds=101, verbose=True):
"""
Run the random debiasing post hoc technique
"""
net = self.get_model()
valloader = self.get_valloader()
rand_result = [math.inf, None, -1]
rand_model = copy.deepcopy(net)
for iteration in range(num_rounds):
rand_model.to(device)
for param in rand_model.parameters():
param.data = param.data * (torch.randn_like(param) * 0.1 + 1)
rand_model.eval()
best_obj, best_thresh = val_model(rand_model, valloader, get_best_objective, self.protected_index, self.prediction_index, self.lam)
if best_obj < rand_result[0]:
del rand_result[1]
rand_result = [best_obj, rand_model.state_dict(), best_thresh]
if iteration % 10 == 0 and verbose:
print(f"{iteration} / 101 trials have been sampled.")
# evaluate best random model
best_model = copy.deepcopy(net)
best_model.load_state_dict(rand_result[1])
best_model.to(device)
best_thresh = rand_result[2]
self.best_rand_model, self.best_rand_thresh = best_model, best_thresh
return self.best_rand_model, self.best_rand_thresh
def evaluate_random_debiased(self, verbose=True):
"""Evaluate random debiased model"""
return self._evaluate_model_thresh(self.best_rand_model, self.best_rand_thresh, verbose)
def adversarial_debias_model(self, batch_size=32, actor_steps=100, critic_steps=300, epochs=10, lam=0.75):
"""
Run the adversarial debiasing post hoc technique
"""
net = self.get_model()
valloader = self.get_valloader()
base_model = copy.deepcopy(net)
base_last_layer = base_model.__getattr__(self.get_last_layer_name())
base_model.__setattr__(self.get_last_layer_name(), nn.Linear(base_last_layer.in_features, base_last_layer.in_features))
actor = nn.Sequential(base_model, nn.Linear(base_last_layer.in_features, 2))
actor.to(device)
actor_optimizer = optim.Adam(actor.parameters())
actor_loss_fn = nn.BCEWithLogitsLoss()
actor_loss = 0.
critic = Critic(batch_size*base_last_layer.in_features)
critic.to(device)
critic_optimizer = optim.Adam(critic.parameters())
critic_loss_fn = nn.MSELoss()
critic_loss = 0.
for epoch in range(epochs):
for param in critic.parameters():
param.requires_grad = True
for param in actor.parameters():
param.requires_grad = False
actor.eval()
critic.train()
for step, (inputs, labels) in enumerate(valloader):
if step > critic_steps:
break
inputs, labels = inputs.to(device), labels.to(device)
if inputs.size(0) != batch_size:
continue
critic_optimizer.zero_grad()
with torch.no_grad():
y_pred = actor(inputs)
y_true = labels[:, self.prediction_index].float().to(device)
y_prot = labels[:, self.protected_index].float().to(device)
bias = compute_bias(y_pred, y_true, 1-y_prot, 'aod')
res = critic(base_model(inputs))
loss = critic_loss_fn(bias.unsqueeze(0), res[0])
loss.backward()
critic_loss += loss.item()
critic_optimizer.step()
if step % 100 == 0:
print_loss = critic_loss if (epoch*critic_steps + step) == 0 else critic_loss / (epoch*critic_steps + step)
print(f'=======> Epoch: {(epoch, step)} Critic loss: {print_loss:.3f}')
for param in critic.parameters():
param.requires_grad = False
for param in actor.parameters():
param.requires_grad = True
actor.train()
critic.eval()
for step, (inputs, labels) in enumerate(valloader):
if step > actor_steps:
break
inputs, labels = inputs.to(device), labels.to(device)
if inputs.size(0) != batch_size:
continue
actor_optimizer.zero_grad()
y_true = labels[:, self.prediction_index].float().to(device)
y_prot = labels[:, self.protected_index].float().to(device)
est_bias = critic(base_model(inputs))
loss = actor_loss_fn(actor(inputs)[:, 0], y_true)
loss = lam*abs(est_bias) + (1-lam)*loss
loss.backward()
actor_loss += loss.item()
actor_optimizer.step()
if step % 100 == 0:
print_loss = critic_loss if (epoch*actor_steps + step) == 0 else critic_loss / (epoch*actor_steps + step)
print(f'=======> Epoch: {(epoch, step)} Actor loss: {print_loss:.3f}')
_, best_thresh = val_model(actor, valloader, get_best_objective, self.protected_index, self.prediction_index, self.lam)
self.best_adv_model, self.best_adv_thresh = actor, best_thresh
return self.best_adv_model, self.best_adv_thresh
def evaluate_adversarial_debiased(self, verbose=True):
"""Evaluate adversarial debiased model"""
return self._evaluate_model_thresh(self.best_adv_model, self.best_adv_thresh, verbose)
def get_objective_with_best_accuracy(y_true, y_pred, y_prot, lam, bias_measure):
"""Get objective for best accuracy threshold"""
rocauc_score = roc_auc_score(y_true.cpu(), y_pred.cpu())
best_acc, best_thresh = get_best_accuracy(y_true, y_pred, y_prot, lam)
bias = compute_bias((y_pred > best_thresh).float().cpu(), y_true.float().cpu(), 1-y_prot.float().cpu(), bias_measure)
obj = lam*abs(bias)+(1-lam)*(1-best_acc)
return rocauc_score, best_acc, bias, obj