-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
81 lines (66 loc) · 2.29 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.resnet50 import ResNet50
app = Flask(__name__)
# app.debug =1
MODEL_PATH = 'models/your_model.h5'
model = ResNet50(weights='imagenet')
@app.route('/')
def index():
return render_template('pages/main.html')
@app.route('/image')
def imager():
return render_template('pages/image.html')
@app.route('/predictor')
def predictor():
return render_template('pages/predictor.html')
@app.route('/trainer')
def trainer():
return render_template('pages/trainer.html')
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
x = preprocess_input(x, mode='caffe')
preds = model.predict(x)
return preds
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['image']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
print(basepath)
file_path = os.path.join(basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
pred_class = decode_predictions(preds, top=1) # ImageNet Decode
result = str(pred_class[0][0][1]) # Convert to string
return result
return None
if __name__ == '__main__':
# app.run(port=5002, debug=True)
# Serve the app with gevent
http_server = WSGIServer(('0.0.0.0', 5000), app)
http_server.serve_forever()