-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfidence_1.html
927 lines (896 loc) · 54.9 KB
/
confidence_1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>26 Confidence Intervals, Part 1: Assessing the Accuracy of Samples – Resampling statistics</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./confidence_2.html" rel="next">
<link href="./testing_procedures.html" rel="prev">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script type="text/javascript">
$(document).ready(function() {
$("table").addClass('lightable-paper lightable-striped lightable-hover')
});
</script>
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="font-awesome.min.css">
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./confidence_1.html"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Resampling statistics</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Python version</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_third.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the third edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_second.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the second edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_method.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">The resampling method</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./what_is_probability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">What is probability?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./about_technology.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Introducing Python and the Jupyter notebook</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">More resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1a.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Probability Theory, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1b.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./more_sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">Two puzzles and more tools</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_2_compound.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Probability Theory, Part 2: Compound Probability</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_3.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">12</span> <span class="chapter-title">Probability Theory, Part 3</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_4_finite.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">13</span> <span class="chapter-title">Probability Theory, Part 4: Estimating Probabilities from Finite Universes</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_variability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">14</span> <span class="chapter-title">On Variability in Sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./monte_carlo.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">15</span> <span class="chapter-title">The Procedures of Monte Carlo Simulation (and Resampling)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./standard_scores.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">16</span> <span class="chapter-title">Ranks, Quantiles and Standard Scores</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_ideas.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">18</span> <span class="chapter-title">Introduction to Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./point_estimation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">19</span> <span class="chapter-title">Point Estimation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./framing_questions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">20</span> <span class="chapter-title">Framing Statistical Questions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./significance.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">22</span> <span class="chapter-title">The Concept of Statistical Significance in Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">23</span> <span class="chapter-title">The Statistics of Hypothesis-Testing with Counted Data, Part 2</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_measured.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">24</span> <span class="chapter-title">The Statistics of Hypothesis-Testing With Measured Data</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_procedures.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_1.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./reliability_average.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">28</span> <span class="chapter-title">Some Last Words About the Reliability of Sample Averages</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./correlation_causation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">29</span> <span class="chapter-title">Correlation and Causation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./how_big_sample.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">30</span> <span class="chapter-title">How Large a Sample?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./bayes_simulation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">31</span> <span class="chapter-title">Bayesian Analysis by Simulation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./exercise_solutions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Exercise Solutions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./technical_note.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Technical Note to the Professional Reader</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./acknowlegements.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">C</span> <span class="chapter-title">Acknowledgements</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./code_topics.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">D</span> <span class="chapter-title">Code topics</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./errors_suggestions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">E</span> <span class="chapter-title">Errors and suggestions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#introduction" id="toc-introduction" class="nav-link active" data-scroll-target="#introduction"><span class="header-section-number">26.1</span> Introduction</a></li>
<li><a href="#estimating-the-accuracy-of-a-sample-mean" id="toc-estimating-the-accuracy-of-a-sample-mean" class="nav-link" data-scroll-target="#estimating-the-accuracy-of-a-sample-mean"><span class="header-section-number">26.2</span> Estimating the accuracy of a sample mean</a></li>
<li><a href="#the-logic-of-confidence-intervals" id="toc-the-logic-of-confidence-intervals" class="nav-link" data-scroll-target="#the-logic-of-confidence-intervals"><span class="header-section-number">26.3</span> The logic of confidence intervals</a></li>
<li><a href="#computing-confidence-intervals" id="toc-computing-confidence-intervals" class="nav-link" data-scroll-target="#computing-confidence-intervals"><span class="header-section-number">26.4</span> Computing confidence intervals</a></li>
<li><a href="#procedure-for-estimating-confidence-intervals" id="toc-procedure-for-estimating-confidence-intervals" class="nav-link" data-scroll-target="#procedure-for-estimating-confidence-intervals"><span class="header-section-number">26.5</span> Procedure for estimating confidence intervals</a></li>
<li><a href="#summary" id="toc-summary" class="nav-link" data-scroll-target="#summary"><span class="header-section-number">26.6</span> Summary</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span id="sec-confidence-accuracy" class="quarto-section-identifier"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="introduction" class="level2" data-number="26.1">
<h2 data-number="26.1" class="anchored" data-anchor-id="introduction"><span class="header-section-number">26.1</span> Introduction</h2>
<p>This chapter discusses how to assess the accuracy of a point estimate of the mean, median, or other statistic of a sample. We want to know: How close is our estimate of (say) the sample mean likely to be to the population mean? The chapter begins with an intuitive discussion of the relationship between a) a statistic derived from sample data, and b) a parameter of a universe from which the sample is drawn. Then we discuss the actual construction of confidence intervals using two different approaches which produce the same numbers though they have different logic. The following chapter shows illustrations of these procedures.</p>
<p>The accuracy of an estimate is a hard intellectual nut to crack, so hard that for hundreds of years statisticians and scientists wrestled with the problem with little success; it was not until the last century or two that much progress was made. The kernel of the problem is learning the extent of the variation in the population. But whereas the sample mean can be used straightforwardly to estimate the population mean, the extent of variation in the sample does not directly estimate the extent of the variation in the population, because the variation differs at different places in the distribution, and there is no reason to expect it to be symmetrical around the estimate or the mean.</p>
<p>The intellectual difficulty of confidence intervals is one reason why they are less prominent in statistics literature and practice than are tests of hypotheses (though statisticians often favor confidence intervals). Another reason is that tests of hypotheses are more fundamental for pure science because they address the question that is at the heart of all knowledge-getting: “Should these groups be considered <em>different or the same</em> ?” The statistical inference represented by confidence limits addresses what seems to be a secondary question in most sciences (though not in astronomy or perhaps physics): “How reliable is the estimate?” Still, confidence intervals are very important in some applied sciences such as geology — estimating the variation in grades of ores, for example — and in some parts of business and industry.</p>
<p>Confidence intervals and hypothesis tests are not disjoint ideas. Indeed, hypothesis testing of a single sample against a benchmark value is (in all schools of thought, I believe) operationally identical with the most common way (Approach 1 below) of constructing a confidence interval and checking whether it includes that benchmark value. But the underlying <em>reasoning</em> is different for confidence limits and hypothesis tests.</p>
<p>The logic of confidence intervals is on shakier ground, in my judgment, than that of hypothesis testing, though there are many thoughtful and respected statisticians who argue that the logic of confidence intervals is better grounded and leads less often to error.</p>
<p>Confidence intervals are considered by many to be part of the same topic as <em>estimation</em>, being an estimation of accuracy, in their view. And confidence intervals and hypothesis testing are seen as sub-cases of each other by some people. Whatever the importance of these distinctions among these intellectual tasks in other contexts, they need not concern us here.</p>
</section>
<section id="estimating-the-accuracy-of-a-sample-mean" class="level2" data-number="26.2">
<h2 data-number="26.2" class="anchored" data-anchor-id="estimating-the-accuracy-of-a-sample-mean"><span class="header-section-number">26.2</span> Estimating the accuracy of a sample mean</h2>
<p>If one draws a sample that is very, very large — large enough so that one need not worry about sample size and dispersion in the case at hand — from a universe whose characteristics one <em>knows</em>, one then can <em>deduce</em> the probability that the sample mean will fall within a given distance of the population mean. Intuitively, it <em>seems</em> as if one should also be able to reverse the process — to infer something about the location of the population mean <em>from the sample mean</em>. But this inverse inference turns out to be a slippery business indeed.</p>
<p>Let’s put it differently: It is all very well to say — as one logically may — that <em>on average</em> the sample mean (or other point estimator) equals a population parameter in most situations.</p>
<p>But what about the result of any <em>particular</em> sample? How accurate or inaccurate an estimate of the population mean is the sample likely to produce?</p>
<p>Because the logic of confidence intervals is subtle, most statistics texts skim right past the conceptual difficulties, and go directly to computation. Indeed, the topic of confidence intervals has been so controversial that some eminent statisticians refuse to discuss it at all. And when the concept is combined with the conventional algebraic treatment, the composite is truly baffling; the formal mathematics makes impossible any intuitive understanding. For students, “pluginski” is the only viable option for passing exams.</p>
<p>With the resampling method, however, the estimation of confidence intervals is easy. The topic then is manageable though subtle and challenging — sometimes pleasurably so. Even beginning undergraduates can enjoy the subtlety and find that it feels good to stretch the brain and get down to fundamentals.</p>
<p>One thing is clear: Despite the subtlety of the topic, the accuracy of estimates must be dealt with, one way or another.</p>
<p>I hope the discussion below resolves much of the confusion of the topic.</p>
</section>
<section id="the-logic-of-confidence-intervals" class="level2" data-number="26.3">
<h2 data-number="26.3" class="anchored" data-anchor-id="the-logic-of-confidence-intervals"><span class="header-section-number">26.3</span> The logic of confidence intervals</h2>
<p>To preview the treatment of confidence intervals presented below: We do not learn about the reliability of sample estimates of the mean (and other parameters) by logical inference from any one particular sample to any one particular universe, because this cannot be done <em>in principle</em>. Instead, we investigate the behavior of various universes in the neighborhood of the sample, universes whose characteristics are chosen on the basis of their similarity to the sample. In this way the estimation of confidence intervals is like all other statistical inference: One investigates the probabilistic behavior of one or more hypothesized universes that are implicitly suggested by the sample evidence but are not logically implied by that evidence.</p>
<p>The examples worked in the following chapter help explain why statistics is a difficult subject. The procedure required to transit successfully from the original question to a statistical probability, and then through a sensible interpretation of the probability, involves a great many choices about the appropriate model based on analysis of the problem at hand; a wrong choice at any point dooms the procedure. The actual computation of the probability — whether done with formulaic probability theory or with resampling simulation — is only a very small part of the procedure, and it is the least difficult part if one proceeds with resampling. The difficulties in the statistical process are not mathematical but rather stem from the hard clear thinking needed to understand the nature of the situation and to ascertain the appropriate way to model it.</p>
<p>Again, the purpose of a confidence interval is to help us assess the reliability of a statistic of the sample — for example, its mean or median — as an estimator of the parameter of the universe. The line of thought runs as follows: It is possible to map the distribution of the means (or other such parameter) of samples of any given size (the size of interest in any investigation usually being the size of the observed sample) and of any given pattern of dispersion (which we will assume for now can be estimated from the sample) that a universe in the neighborhood of the sample will produce. For example, we can compute how large an interval to the right and left of a postulated universe’s mean is required to include 45 percent of the samples on either side of the mean.</p>
<p>What <em>cannot be done</em> is to draw conclusions from sample evidence about the nature of the universe from which it was drawn, in the absence of <em>some information</em> about the set of universes from which it <em>might</em> have been drawn. That is, one can investigate the behavior of one or more specified universes, and discover the absolute and relative probabilities that the given <em>specified</em> universe(s) <em>might produce</em> such a sample. But the universe(s) to be so investigated must be specified in advance (which is consistent with the Bayesian view of statistics). To put it differently, we can employ probability theory to learn the pattern(s) of results produced by samples drawn from a particular specified universe, and then compare that pattern to the observed sample. But we cannot infer the probability that that sample was drawn from any given universe in the absence of knowledge of the other possible sources of the sample. That is a subtle difference, I know, but I hope that the following discussion makes it understandable.</p>
</section>
<section id="computing-confidence-intervals" class="level2" data-number="26.4">
<h2 data-number="26.4" class="anchored" data-anchor-id="computing-confidence-intervals"><span class="header-section-number">26.4</span> Computing confidence intervals</h2>
<p>In the first part of the discussion we shall leave aside the issue of estimating the extent of the dispersion — a troublesome matter, but one which seldom will result in unsound conclusions even if handled crudely. To start from scratch again: The first — and seemingly straightforward — step is to estimate the mean of the population based on the sample data. The next and more complex step is to ask about the range of values (and their probabilities) that the estimate of the mean might take — that is, the construction of confidence intervals. It seems natural to assume that if our best guess about the population mean is the value of the sample mean, our best guesses about the various values that the population mean might take if unbiased sampling error causes discrepancies between population parameters and sample statistics, should be values clustering around the sample mean in a symmetrical fashion (assuming that asymmetry is not forced by the distribution — as for example, the binomial is close to symmetric near its middle values). But <em>how far away</em> from the sample mean might the population mean be?</p>
<p>Let’s walk slowly through the logic, going back to basics to enhance intuition. Let’s start with the familiar saying, “The apple doesn’t fall far from the tree.” Imagine that you are in a very hypothetical place where an apple tree is above you, and you are not allowed to look up at the tree, whose trunk has an infinitely thin diameter. You see an apple on the ground. You must now guess where the trunk (center) of the tree is. The obvious guess for the location of the trunk is right above the apple. But the trunk is not likely to be <em>exactly</em> above the apple because of the small probability of the trunk being at <em>any</em> particular location, due to sampling dispersion.</p>
<p>Though you find it easy to make a best guess about where the mean is (the true trunk), with the given information alone you have no way of making an estimate of the <em>probability</em> that the mean is one place or another, other than that the probability is the same that the tree is to the north or south, east or west, of you. You have no idea about <em>how</em> far the center of the tree is from you. You cannot even put a maximum on the distance it is from you, and without a maximum you could not even reasonably assume a rectangular distribution, or a Normal distribution, or any other.</p>
<p>Next you see two apples. What guesses do you make now? The midpoint between the two obviously is your best guess about the location of the center of the tree. But still there is no way to estimate the probability distribution of the location of the center of the tree.</p>
<p>Now assume you are given still another piece of information: The outermost spread of the tree’s branches (the range) equals the distance between the two apples you see. With this information, you could immediately locate the <em>boundaries</em> of the location of the center of the tree. But this is only because the answer you sought was given to you in disguised form.</p>
<p>You could, however, come up with some statements of <em>relative</em> probabilities. In the absence of prior information on where the tree might be, you would offer higher odds that the center (the trunk) is in any unit of area close to the center of your two apples than in a unit of area far from the center. That is, if you are told that either one apple, or two apples, came from <em>one of two specified trees whose locations are given</em>, with no reason to believe it is one tree or the other (later, we can put other prior probabilities on the two trees), and you are also told the dispersions, you now can put <em>relative</em> probabilities on <em>one tree or the other</em> being the source. (Note to the advanced student: This is like the Neyman-Pearson procedure, and it is easily reconciled with the Bayesian point of view to be explored later. One can also connect this concept of relative probability to the Fisherian concept of maximum likelihood — which is a probability relative to all others). And you could list from high to low the probabilities for each unit of area in the neighborhood of your apple sample. But this procedure is quite different from making any single absolute numerical probability estimate of the location of the mean.</p>
<p>Now let’s say you see 10 apples on the ground. Of course your best estimate is that the trunk of the tree is at their arithmetic center. But <em>how close</em> to the actual tree trunk (the population mean) is your estimate likely to be? This is the question involved in confidence intervals. We want to estimate a <em>range</em> (around the center, which we estimate with the center mean of the sample, we said) within which we are pretty sure that the trunk lies.</p>
<p>To simplify, we consider variation along only one dimension — that is, on (say) a north-south line rather than on two dimensions (the entire surface).</p>
<p>We first note that you have no reason to estimate the trunk’s location to be outside the sample pattern, or at its edge, though it could be so in principle.</p>
<p>If the pattern of the 10 apples is tight, you imagine the pattern of the likely locations of the population mean to be tight; if not, not. That is, <em>it is intuitively clear that there is some connection between how spread out are the sample observations and your confidence about the location of the population mean</em>. For example, consider two patterns of a thousand apples, one with twice the spread of another, where we measure spread by (say) the diameter of the circle that holds the inner half of the apples for each tree, or by the standard deviation. It makes sense that if the two patterns have the same center point (mean), you would put higher odds on the tree with the smaller spread being within some given distance — say, a foot — of the estimated mean. But what odds would you give on that bet?</p>
</section>
<section id="procedure-for-estimating-confidence-intervals" class="level2" data-number="26.5">
<h2 data-number="26.5" class="anchored" data-anchor-id="procedure-for-estimating-confidence-intervals"><span class="header-section-number">26.5</span> Procedure for estimating confidence intervals</h2>
<p>Here is a canonical list of questions that help organize one’s thinking when constructing confidence intervals. The list is comparable to the lists for questions in probability and for hypothesis testing provided in earlier chapters. This set of questions will be applied operationally in <a href="confidence_2.html" class="quarto-xref"><span>Chapter 27</span></a>.</p>
<p><strong>What Is The Question?</strong></p>
<p><em>What is the purpose to be served by answering the question? Is this a “probability” or a “statistics” question?</em></p>
<p><strong>If the Question Is a Statistical Inference Question:</strong></p>
<p><em>What is the form of the statistics question?</em></p>
<p>Hypothesis test or confidence limits or other inference?</p>
<p><strong>Assuming Question Is About Confidence Limits:</strong></p>
<p><em>What is the description of the sample that has been observed?</em></p>
<p>Raw data?</p>
<p>Statistics of the sample?</p>
<p><em>Which universe? Assuming that the observed sample is representative of the universe from which it is drawn, what is your best guess of the properties of the universe whose parameter you wish to make statements about? Finite or infinite? Bayesian possibilities?</em></p>
<p><em>Which parameter do you wish to make statements about?</em></p>
<p>Mean, median, standard deviation, range, interquartile range, other?</p>
<p><em>Which symbols for the observed entities?</em></p>
<p>Discrete or continuous?</p>
<p>What values or ranges of values?</p>
<p><em>If the universe is as guessed at, for which samples do you wish to estimate the variation?</em> (Answer: samples the same size as has been observed)</p>
<p>Here one may continue with the conventional method, using perhaps a <em>t</em> or <em>F</em> or chi-square test or whatever. Everything up to now is the same whether continuing with resampling or with standard parametric test.</p>
<p><em>What procedure to produce the original entities in the sample?</em></p>
<p>What universe will you draw them from? Random selection?</p>
<p>What size resample?</p>
<p>Simple (single step) or complex (multiple “if” drawings)?</p>
<p><em>What procedure to produce resamples?</em></p>
<p>With or without replacement? Number of drawings?</p>
<p><em>What to record as result of resample drawing?</em></p>
<p>Mean, median, or whatever of resample</p>
<p><strong>Stating the Distribution of Results</strong></p>
<p><em>Histogram, frequency distribution, other?</em></p>
<p><strong>Choice Of Confidence Bounds</strong></p>
<p><em>One or two-tailed?</em></p>
<p><em>90%, 95%, etc.?</em></p>
<p><strong>Computation of Probabilities Within Chosen Bounds</strong></p>
</section>
<section id="summary" class="level2" data-number="26.6">
<h2 data-number="26.6" class="anchored" data-anchor-id="summary"><span class="header-section-number">26.6</span> Summary</h2>
<p>This chapter discussed the theoretical basis for assessing the accuracy of population averages from sample data. The following chapter shows two very different approaches to confidence intervals, and provides examples of the computations.</p>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
// For code content inside modals, clipBoardJS needs to be initialized with a container option
// TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
<nav class="page-navigation">
<div class="nav-page nav-page-previous">
<a href="./testing_procedures.html" class="pagination-link" aria-label="General Procedures for Testing Hypotheses">
<i class="bi bi-arrow-left-short"></i> <span class="nav-page-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span>
</a>
</div>
<div class="nav-page nav-page-next">
<a href="./confidence_2.html" class="pagination-link" aria-label="Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals">
<span class="nav-page-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span> <i class="bi bi-arrow-right-short"></i>
</a>
</div>
</nav>
</div> <!-- /content -->
</body></html>