-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobability_theory_1b.html
1048 lines (1016 loc) · 60.6 KB
/
probability_theory_1b.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>9 Probability Theory Part I (continued) – Resampling statistics</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./more_sampling_tools.html" rel="next">
<link href="./probability_theory_1a.html" rel="prev">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script type="text/javascript">
$(document).ready(function() {
$("table").addClass('lightable-paper lightable-striped lightable-hover')
});
</script>
<script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<script type="text/javascript">
const typesetMath = (el) => {
if (window.MathJax) {
// MathJax Typeset
window.MathJax.typeset([el]);
} else if (window.katex) {
// KaTeX Render
var mathElements = el.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
window.katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: false
});
}
}
}
}
window.Quarto = {
typesetMath
};
</script>
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="font-awesome.min.css">
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./probability_theory_1b.html"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Resampling statistics</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Python version</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_third.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the third edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_second.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the second edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_method.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">The resampling method</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./what_is_probability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">What is probability?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./about_technology.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Introducing Python and the Jupyter notebook</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">More resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1a.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Probability Theory, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1b.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./more_sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">Two puzzles and more tools</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_2_compound.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Probability Theory, Part 2: Compound Probability</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_3.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">12</span> <span class="chapter-title">Probability Theory, Part 3</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_4_finite.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">13</span> <span class="chapter-title">Probability Theory, Part 4: Estimating Probabilities from Finite Universes</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_variability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">14</span> <span class="chapter-title">On Variability in Sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./monte_carlo.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">15</span> <span class="chapter-title">The Procedures of Monte Carlo Simulation (and Resampling)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./standard_scores.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">16</span> <span class="chapter-title">Ranks, Quantiles and Standard Scores</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_ideas.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">18</span> <span class="chapter-title">Introduction to Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./point_estimation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">19</span> <span class="chapter-title">Point Estimation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./framing_questions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">20</span> <span class="chapter-title">Framing Statistical Questions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./significance.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">22</span> <span class="chapter-title">The Concept of Statistical Significance in Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">23</span> <span class="chapter-title">The Statistics of Hypothesis-Testing with Counted Data, Part 2</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_measured.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">24</span> <span class="chapter-title">The Statistics of Hypothesis-Testing With Measured Data</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_procedures.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./reliability_average.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">28</span> <span class="chapter-title">Some Last Words About the Reliability of Sample Averages</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./correlation_causation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">29</span> <span class="chapter-title">Correlation and Causation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./how_big_sample.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">30</span> <span class="chapter-title">How Large a Sample?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./bayes_simulation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">31</span> <span class="chapter-title">Bayesian Analysis by Simulation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./exercise_solutions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Exercise Solutions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./technical_note.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Technical Note to the Professional Reader</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./acknowlegements.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">C</span> <span class="chapter-title">Acknowledgements</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./code_topics.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">D</span> <span class="chapter-title">Code topics</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./errors_suggestions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">E</span> <span class="chapter-title">Errors and suggestions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#sec-independence" id="toc-sec-independence" class="nav-link active" data-scroll-target="#sec-independence"><span class="header-section-number">9.1</span> The special case of independence</a>
<ul class="collapse">
<li><a href="#sec-example-four-events" id="toc-sec-example-four-events" class="nav-link" data-scroll-target="#sec-example-four-events"><span class="header-section-number">9.1.1</span> Example: Four Events in a Row — The Multiplication Rule</a></li>
</ul></li>
<li><a href="#the-addition-of-probabilities" id="toc-the-addition-of-probabilities" class="nav-link" data-scroll-target="#the-addition-of-probabilities"><span class="header-section-number">9.2</span> The addition of probabilities</a></li>
<li><a href="#theoretical-devices-for-the-study-of-probability" id="toc-theoretical-devices-for-the-study-of-probability" class="nav-link" data-scroll-target="#theoretical-devices-for-the-study-of-probability"><span class="header-section-number">9.3</span> Theoretical devices for the study of probability</a></li>
<li><a href="#the-concept-of-sample-space" id="toc-the-concept-of-sample-space" class="nav-link" data-scroll-target="#the-concept-of-sample-space"><span class="header-section-number">9.4</span> The Concept of Sample Space</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span id="sec-prob-theory-one-b" class="quarto-section-identifier"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="sec-independence" class="level2" data-number="9.1">
<h2 data-number="9.1" class="anchored" data-anchor-id="sec-independence"><span class="header-section-number">9.1</span> The special case of independence</h2>
<p>A key concept in probability and statistics is that of the independence of two events in which we are interested. Two events are said to be “independent” when one of them does not have any apparent relationship to the other. If I flip a coin that I know from other evidence is a fair coin, and I get a head, the chance of then getting <em>another</em> head is still 50-50 (one <em>in</em> two, or one <em>to</em> one.) And, if I flip a coin ten times and get heads the first nine times, the probability of getting a head on the tenth flip is <em>still</em> 50-50. Hence the concept of independence is characterized by the phrase “The coin has no memory.” (Actually the matter is a bit more complicated. If you had previously flipped the coin many times and knew it to be a fair coin, then the odds would still be 50-50, even after nine heads. But, if you had never seen the coin before, the run of nine heads might reasonably make you doubt that the coin was a fair one.)</p>
<p>In the Washington Commanders example above, we needed a different set of buckets to estimate the probability of a <em>nice</em> day plus a win, and of a <em>nasty</em> day plus a win. But what if the Commanders’ chances of winning are the same whether the day is nice or nasty? If so, we say that the chance of winning is <em>independent</em> of the kind of day. That is, in this special case,</p>
<p><span class="math display">\[
P(\text{win | nice day}) = P(\text{win | nasty day}) \text{ and } P(\text{nice
day and win})
\]</span></p>
<p><span class="math display">\[
= P(\text{nice day}) * P(\text{winning | nice day})
\]</span></p>
<p><span class="math display">\[
= P(\text{nice day}) * P(\text{winning})
\]</span></p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>See section <a href="probability_theory_1a.html#sec-cond-uncond" class="quarto-xref"><span>Section 8.13</span></a> for an explanation of this notation.</p>
</div>
</div>
<p>In this case we need only one set of two buckets to make all the estimates.</p>
<p>Independence means that the elements are drawn from 2 or more <em>separate sets of possibilities</em>. <strong>That is, <span class="math inline">\(P(A | B) = P(A | \ \hat{} B) = P(A)\)</span> and vice versa</strong>.</p>
<!---
Work on exposition here. Maybe note that independence means that chances of A following B are same as chances of A following not B.
-->
<p>In other words, if the occurrence of the first event does not change this probability that the second event will occur, then the events are independent.</p>
<p>Another way to put the matter: Events A and B are said to be independent of each other if <em>knowing</em> whether A occurs does not change the probability that B will occur, and vice versa. If knowing whether A does occur alters the probability of B occurring, then A and B are dependent.</p>
<p>If two events are independent, the multiplication rule simplifies to <span class="math inline">\(P(A \text{ and } B) = P(A) * P(B)\)</span> . I’ll repeat once more: <strong>This rule is simply a mathematical shortcut, and one can make the desired estimate by simulation.</strong></p>
<p>Also again, if two events are <em>not</em> independent — that is, if <span class="math inline">\(P(A | B)\)</span> is not equal to <span class="math inline">\(P(A)\)</span> because <span class="math inline">\(P(A)\)</span> is dependent upon the occurrence of <span class="math inline">\(B\)</span>, then the formula to be used now is, <span class="math inline">\(P(A \text{ and } B) = P(A | B) * P(B)\)</span> , which is sufficiently confusing that you are probably better off with a simulation.</p>
<p>What about if each of the probabilities is dependent on the other outcome? There is no easy formulaic method to deal with such a situation.</p>
<p>People commonly make the mistake of treating independent events as non-independent, perhaps from superstitious belief. After a long run of blacks, roulette gamblers say that the wheel is “due” to come up red. And sportswriters make a living out of interpreting various sequences of athletic events that occur by chance, and they talk of teams that are “due” to win because of the “Law of Averages.” For example, if Barry Bonds goes to bat four times without a hit, all of us (including trained statisticians who really know better) <em>feel</em> that he is “due” to get a hit and that the probability of his doing so is very high — higher that is, than his season’s average. The so-called “Law of Averages” implies no such thing, of course.</p>
<p>Events are often dependent in subtle ways. A boy may telephone one of several girls chosen at random. But, if he calls the same girl <em>again</em> (or if he does <em>not</em> call her again), the second event is not likely to be independent of the first. And the probability of his calling her is <em>different</em> after he has gone out with her once than before he went out with her.</p>
<p>As noted in the section above, events A and B are said to be independent of each other if the <em>conditional probabilities of A and B remain the same</em>. And the conditional probabilities remain the same if sampling is conducted <em>with replacement</em>. <!---
Needs more explanation.
--></p>
<p>Let’s now re-consider the multiplication rule with the special but important case of independence.</p>
<section id="sec-example-four-events" class="level3" data-number="9.1.1">
<h3 data-number="9.1.1" class="anchored" data-anchor-id="sec-example-four-events"><span class="header-section-number">9.1.1</span> Example: Four Events in a Row — The Multiplication Rule</h3>
<p>Assume that we want to know the probability of four successful archery shots in a row, where the probability of a success on a given shot is .25.</p>
<p>Instead of simulating the process with resampling trials we can, if we wish, arrive at the answer with the “multiplication rule.” This rule says that the probability that <em>all</em> of a given number of <em>independent events</em> (the successful shots) will occur (four out of four in this case) is the <em>product</em> of their individual probabilities — in this case, 1/4 x 1/4 x 1/4 x 1/4 = 1/256. If in doubt about whether the multiplication rule holds in any given case, however, you may check by resampling simulation. For the case of four daughters in a row, assuming that the probability of a girl is .5, the probability is 1/2 x 1/2 x 1/2 x 1/2 = 1/16.</p>
<p>Better yet, we’d use the more exact probability of getting a girl: <span class="math inline">\(100/206\)</span>, and multiply out the result as <span class="math inline">\((100/206)^4\)</span>. An important point here, however: we have estimated the probability of a <em>particular</em> family having four daughters as 1 in 16 — that is, odds of 15 to 1. But note well: This is a very different idea from stating that the odds are 15 to 1 against <em>some</em> family’s having four daughters in a row. In fact, as many families will have four girls in a row as will have boy-girl-boy-girl in that order or girl-boy-girl-boy or <em>any other series</em> of four children. The chances against any particular series is the same — 1 in 16 — and one-sixteenth of all four-children families will have each of these series, on average. This means that if your next-door neighbor has four daughters, you cannot say how much “out of the ordinary” the event is. It is easy to slip into unsound thinking about this matter.</p>
<!---
Needs more explanation
-->
<p>Why do we <em>multiply</em> the probabilities of the independent simple events to learn the probability that they will occur jointly (the composite event)? Let us consider this in the context of three basketball shots each with 1/3 probability of hitting.</p>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div id="fig-basketball-shots" class="quarto-float quarto-figure quarto-figure-center anchored" data-fig-align="center">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-basketball-shots-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<img src="diagrams/basketball_shots.svg" class="img-fluid quarto-figure quarto-figure-center figure-img" style="width:70.0%">
</div>
<figcaption class="quarto-float-caption-bottom quarto-float-caption quarto-float-fig" id="fig-basketball-shots-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Figure 9.1: Tree Diagram for 3 Basketball Shots, Probability of a Hit is 1/3
</figcaption>
</figure>
</div>
</div>
</div>
<p><a href="#fig-basketball-shots" class="quarto-xref">Figure <span>9.1</span></a> is a tree diagram showing a set of sequential simple events where each event is conditional upon a prior simple event. Hence every probability after the first is a <em>conditional</em> probability.</p>
<p>In <a href="#fig-basketball-shots" class="quarto-xref">Figure <span>9.1</span></a>, follow the top path first. On approximately one-third of the occasions, the first shot will hit. <em>Among that third</em> of the first shots, roughly a third will <em>again</em> hit on the second shot, that is, 1/3 of 1/3 or 1/3 x 1/3 = 1/9. The top path makes it clear that in 1/3 x 1/3 = 1/9 of the trials, <em>two</em> hits in a row will occur. Then, of the 1/9 of the total trials in which two hits in a row occur, about 1/3 will go on to a <em>third</em> hit, or 1/3 x 1/3 x 1/3 = 1/27. Remember that we are dealing here with independent events; regardless of whether the player made his first two shots, the probability is still 1 in 3 on the third shot.</p>
</section>
</section>
<section id="the-addition-of-probabilities" class="level2" data-number="9.2">
<h2 data-number="9.2" class="anchored" data-anchor-id="the-addition-of-probabilities"><span class="header-section-number">9.2</span> The addition of probabilities</h2>
<p>Back to the Washington Redskins again. You ponder more deeply the possibility of a nasty day, and you estimate with more discrimination that the probability of snow is .1 and of rain it is .2 (with .7 of a nice day). Now you wonder: What is the probability of a rainy day <em>or</em> a nice day?</p>
<p>To find this probability by simulation:</p>
<ol type="1">
<li><p>Put 7 blue balls (nice day), 1 black ball (snowy day) and 2 gray balls (rainy day) into a bucket. You want to know the probability of a blue <em>or</em> a gray ball. To find this probability:</p></li>
<li><p>Draw one ball and record “yes” if its color is blue or gray, “no” otherwise.</p></li>
<li><p>Repeat step 1 perhaps 200 times.</p></li>
<li><p>Find the proportion of “yes” trials.</p></li>
</ol>
<p>This procedure certainly will do the job. And simulation may be unavoidable when the situation gets more complex. But in this simple case, you are likely to see that you can compute the probability by <em>adding</em> the .7 probability of a nice day and the .2 probability of a rainy day to get the desired probability. This procedure of formulaic deductive probability theory is called the <em>addition rule</em>. ## The addition rule</p>
<p>The addition rule applies to <em>mutually exclusive</em> outcomes — that is, the case where if one outcome occurs, the other(s) cannot occur; one event implies the absence of the other when events are mutually exclusive. Green and red coats are mutually exclusive if you never wear more than one coat at a time. If there are only two possible mutually-exclusive outcomes, the outcomes are <em>complementary</em>. It may be helpful to note that mutual exclusivity equals total dependence; if one outcome occurs, the other cannot. Hence we write formally that</p>
<p><span class="math display">\[
\text{If} P(A \text{ and } B) = 0 \text{ then }
\]</span></p>
<p><span class="math display">\[
P(A \text{ or } B) = P(A) + P(B)
\]</span></p>
<p>An outcome and its <em>absence</em> are mutually exclusive, and their probabilities add to unity.</p>
<p><span class="math display">\[
P(A) + P(\ \hat{} A) = 1
\]</span></p>
<p>Examples include a) rain and no rain, and b) if <span class="math inline">\(P(\text{sales > \$1 million}) = 0.2\)</span>, then <span class="math inline">\(P(\text{sales <= \$1 million}) = 0.8\)</span>.</p>
<p>As with the multiplication rule, the addition rule can be a useful shortcut. The answer can always be obtained by simulation, too.</p>
<p>We have so far implicitly assumed that a rainy day and a snowy day are mutually exclusive. But that need not be so; both rain and snow can occur on the same day; if we take this possibility into account, we cannot then use the addition rule.</p>
<p>Consider the case in which seven days in ten are nice, one day is rainy, one day is snowy, <em>and</em> one day is <em>both</em> rainy and snowy. What is the chance that it will be either nice or snowy? The procedure is just as before, except that some rainy days are included because they are also snowy.</p>
<p>When A and B are <em>not</em> mutually exclusive — when it is possible that the day might be both rainy and snowy, or you might wear both red and green coats on the same day, we write (in the latter case) P(red and green coats) > 0, and the appropriate formula is</p>
<p><span class="math display">\[
P(\text{red or green}) = P(\text{red}) + P(\text{green}) - P(\text{red and green}) `
\]</span></p>
<!---
Venn diagram? Do we need this exposition though?
-->
<p>In this case as in much of probability theory, the simulation for the case in which the events are not mutually exclusive is no more complex than when they are mutually exclusive; indeed, if you simulate you never even need to know the concept of mutual exclusivity or inquire whether that is your situation. In contrast, the appropriate formula for non-exclusivity is more complex, and if one uses formulas one must inquire into the characteristics of the situation and decide which formula to apply depending upon the classification; if you classify wrongly and therefore apply the wrong formula, the result is a wrong answer.</p>
<!---
Maybe implement here to show the above.
-->
<p>To repeat, the addition rule only works when the probabilities you are adding are <em>mutually exclusive</em> — that is, when the two cannot occur together.</p>
<p>The multiplication and addition rules are as different from each other as mortar and bricks; both, however, are needed to build walls. The multiplication rule pertains to a single outcome composed of two or more elements (e.g. weather, and win-or-lose), whereas the addition rule pertains to two or more possible outcomes for one element. Drawing from a card deck (with replacement) provides an analogy: the addition rule is like one draw with two or more possible cards of interest, whereas the multiplication rule is like two or more cards being drawn with one particular “hand” being of interest.</p>
</section>
<section id="theoretical-devices-for-the-study-of-probability" class="level2" data-number="9.3">
<h2 data-number="9.3" class="anchored" data-anchor-id="theoretical-devices-for-the-study-of-probability"><span class="header-section-number">9.3</span> Theoretical devices for the study of probability</h2>
<p>It may help you to understand the simulation approach to estimating composite probabilities demonstrated in this book if you also understand the deductive formulaic approach. So we’ll say a bit about it here.</p>
<p>The most fundamental concept in theoretical probability is the list of events that may occur, together with the probability of each one (often arranged so as to be equal probabilities). This is the concept that Galileo employed in his great fundamental work in theoretical probability about four hundred years ago when a gambler asked Galileo about the chances of getting a nine rather than a ten in a game of three dice (though others such as Cardano had tackled the subject earlier).<a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a></p>
<p>Galileo wrote down all the possibilities in a tree form, a refinement for mapping out the sample space.</p>
<p>Galileo simply displayed the events themselves — such as “2,” “4,” and “4,” making up a total of 10, a specific event arrived at in a specific way. Several different events can lead to a 10 with three dice. If we now consider each of these events, we arrive at the concept of the <em>ways</em> that a total of 10 can arise. We ask the number of ways that an outcome can and cannot occur. (See the paragraph above). This is equivalent both operationally and linguistically to the <em>paths</em> in (say) the quincunx device or Pascal’s Triangle which we shall discuss shortly.</p>
<p>A <em>tree</em> is the most basic display of the paths in a given situation. Each branch of the tree — a unique path from the start on the left-hand side to the endpoint on the right-hand side — contains the <em>sequence of all the elements</em> that make up that event, in the order in which they occur. The right-hand ends of the branches constitute a list of the outcomes. That list includes all possible permutations — that is, it distinguishes among outcomes by the orders in which the particular die outcomes occur.</p>
</section>
<section id="the-concept-of-sample-space" class="level2" data-number="9.4">
<h2 data-number="9.4" class="anchored" data-anchor-id="the-concept-of-sample-space"><span class="header-section-number">9.4</span> The Concept of Sample Space</h2>
<p>The formulaic approach begins with the idea of <em>sample space</em>, which is the set of all possible outcomes of the “experiment” or other situation that interests us. Here is a formal definition from Goldberg <span class="citation" data-cites="goldberg1986probability">(<a href="references.html#ref-goldberg1986probability" role="doc-biblioref">1986, 46</a>)</span>:</p>
<blockquote class="blockquote">
<p>A <em>sample space S</em> associated with a real or conceptual experiment is a set such that (1) each element of S denotes an outcome of the experiment, and (2) any performance of the experiment results in an outcome that corresponds to one and only one element of S.</p>
</blockquote>
<p>Because the sum of the probabilities for all the possible outcomes in a given experimental trial is unity, the sum of all the events in the sample space (S) = 1.</p>
<p>Early on, people came up with the idea of estimating probabilities by arraying the possibilities for, and those against, the event occurring. For example, the coin could fall in three ways — head, tail, or on its side. They then speedily added the qualification that the possibilities in the list must have an equal chance, to distinguish the coin falling on its side from the other possibilities (so ignore it). Or, if it is impossible to make the probabilities equal, make special allowance for inequality. Working directly with the sample space is the <em>method of first principles</em>. The idea of a list was refined to the idea of sample space, and “for” and “against” were refined to the “success” and “failure” elements among the total elements.</p>
<p>The concept of sample space raises again the issue of how to estimate the simple probabilities. While we usually can estimate the probabilities accurately in gambling games because we ourselves construct the games and therefore control the probabilities that they produce, we have much less knowledge of the structures that underlie the important problems in life — in science, business, the stock market, medicine, sports, and so on. We therefore must wrestle with the issue of what probabilities we should include in our theoretical sample space, or in our experiments. Often we proceed by choosing as an analogy a physical “model” whose properties we know and which we consider to be appropriate — such as a gambling game with coins, dice, cards. This model becomes our idealized setup. But this step makes crystal-clear that judgment is heavily involved in the process, because choosing the analogy requires judgment.</p>
<p>A <em>Venn diagram</em> is another device for displaying the elements that make up an event. But unlike a tree diagram, it does not show the sequence of those elements; rather, it shows the <em>extent of overlap among various classes of elements</em>. A Venn diagram expresses by <em>areas</em> (especially rectangular Venn diagrams) the numbers at the end of the branches in a tree.</p>
<p>Pascal’s Triangle is still another device. It aggregates the last permutation branches in the tree into <em>combinations</em> — that is, without distinguishing by order. It shows analytically (by tracing them) the various paths that lead to various combinations.</p>
<p>The study of the mathematics of probability is the study of calculational shortcuts to do what tree diagrams do. If you don’t care about the shortcuts, then you don’t need the formal mathematics--though it may improve your mathematical insight (or it may not). The resampling method dispenses not only with the shortcuts but also with the entire counting of points in the sample space.</p>
<div id="refs" class="references csl-bib-body hanging-indent" data-entry-spacing="0" role="list" style="display: none">
<div id="ref-bulmer1979principles" class="csl-entry" role="listitem">
Bulmer, M. G. 1979. <em>Principles of Statistics</em>. New York, NY: Dover Publications, inc. <a href="https://archive.org/details/principlesofstat0000bulm">https://archive.org/details/principlesofstat0000bulm</a>.
</div>
<div id="ref-goldberg1986probability" class="csl-entry" role="listitem">
Goldberg, Samuel. 1986. <em>Probability: An Introduction</em>. Courier Corporation. <a href="https://www.google.co.uk/books/edition/Probability/CmzFx9rB_FcC">https://www.google.co.uk/books/edition/Probability/CmzFx9rB_FcC</a>.
</div>
</div>
</section>
<section id="footnotes" class="footnotes footnotes-end-of-document" role="doc-endnotes">
<hr>
<ol>
<li id="fn1"><p>Here is another example of the confusion on such matters, this one written by Charles Cotton (part-author of <a href="https://en.wikipedia.org/wiki/The_Compleat_Angler">The Compleat Angler</a>) in 1674:</p>
<blockquote class="blockquote">
<p>Now six and eight one would think should admit of no difference in advantage with seven, but if you will rightly consider the case, and be so vain to make trial thereof, you will find a great advantage in seven over six and eight. How can that be you will say, hath not six, seven and eight equal chances? For example, in six, quarter deuce and two treys; in eight, six deuce, cinque trey, and two quarters; and hath not seven three as aforesaid? It is confest; but pray consider the disadvantage in the doublets, two treys and two quarters, and you will find that six deuce is sooner thrown than two quarters, and so consequently, cinque Ace or quarter deuce sooner than two treys: I saw an old rook once take up a young fellow in a tavern, upon this very score: the bargain was made that the rook should have seven always and the young gentleman six, and throw continually; agreed to play they went, the rook got the first day ten pound, the next day the like sum; and so for six days together losing in all threescore pounds; notwithstanding the gentleman, I am confident, had square dice, and threw them always himself.</p>
</blockquote>
<p>Cited in <span class="citation" data-cites="bulmer1979principles">(<a href="references.html#ref-bulmer1979principles" role="doc-biblioref">Bulmer 1979, 20–21</a>)</span><a href="#fnref1" class="footnote-back" role="doc-backlink">↩︎</a></p></li>
</ol>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
// For code content inside modals, clipBoardJS needs to be initialized with a container option
// TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};