-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampling_tools.html
1396 lines (1362 loc) · 96 KB
/
sampling_tools.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>7 Tools for samples and sampling – Resampling statistics</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./probability_theory_1a.html" rel="next">
<link href="./resampling_with_code2.html" rel="prev">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script type="text/javascript">
$(document).ready(function() {
$("table").addClass('lightable-paper lightable-striped lightable-hover')
});
</script>
<script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<script type="text/javascript">
const typesetMath = (el) => {
if (window.MathJax) {
// MathJax Typeset
window.MathJax.typeset([el]);
} else if (window.katex) {
// KaTeX Render
var mathElements = el.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
window.katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: false
});
}
}
}
}
window.Quarto = {
typesetMath
};
</script>
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="font-awesome.min.css">
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./sampling_tools.html"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Resampling statistics</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Python version</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_third.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the third edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_second.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the second edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_method.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">The resampling method</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./what_is_probability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">What is probability?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./about_technology.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Introducing Python and the Jupyter notebook</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">More resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_tools.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1a.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Probability Theory, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1b.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./more_sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">Two puzzles and more tools</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_2_compound.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Probability Theory, Part 2: Compound Probability</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_3.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">12</span> <span class="chapter-title">Probability Theory, Part 3</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_4_finite.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">13</span> <span class="chapter-title">Probability Theory, Part 4: Estimating Probabilities from Finite Universes</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_variability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">14</span> <span class="chapter-title">On Variability in Sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./monte_carlo.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">15</span> <span class="chapter-title">The Procedures of Monte Carlo Simulation (and Resampling)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./standard_scores.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">16</span> <span class="chapter-title">Ranks, Quantiles and Standard Scores</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_ideas.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">18</span> <span class="chapter-title">Introduction to Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./point_estimation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">19</span> <span class="chapter-title">Point Estimation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./framing_questions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">20</span> <span class="chapter-title">Framing Statistical Questions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./significance.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">22</span> <span class="chapter-title">The Concept of Statistical Significance in Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">23</span> <span class="chapter-title">The Statistics of Hypothesis-Testing with Counted Data, Part 2</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_measured.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">24</span> <span class="chapter-title">The Statistics of Hypothesis-Testing With Measured Data</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_procedures.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./reliability_average.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">28</span> <span class="chapter-title">Some Last Words About the Reliability of Sample Averages</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./correlation_causation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">29</span> <span class="chapter-title">Correlation and Causation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./how_big_sample.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">30</span> <span class="chapter-title">How Large a Sample?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./bayes_simulation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">31</span> <span class="chapter-title">Bayesian Analysis by Simulation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./exercise_solutions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Exercise Solutions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./technical_note.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Technical Note to the Professional Reader</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./acknowlegements.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">C</span> <span class="chapter-title">Acknowledgements</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./code_topics.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">D</span> <span class="chapter-title">Code topics</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./errors_suggestions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">E</span> <span class="chapter-title">Errors and suggestions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#introduction" id="toc-introduction" class="nav-link active" data-scroll-target="#introduction"><span class="header-section-number">7.1</span> Introduction</a></li>
<li><a href="#samples-and-labels-and-strings" id="toc-samples-and-labels-and-strings" class="nav-link" data-scroll-target="#samples-and-labels-and-strings">7.2 Samples and labels and strings</a></li>
<li><a href="#sec-types-values" id="toc-sec-types-values" class="nav-link" data-scroll-target="#sec-types-values">7.3 Types of values in Python</a></li>
<li><a href="#sec-intro-to-strings" id="toc-sec-intro-to-strings" class="nav-link" data-scroll-target="#sec-intro-to-strings">7.4 String values</a></li>
<li><a href="#strings-in-s" id="toc-strings-in-s" class="nav-link" data-scroll-target="#strings-in-s">7.5 Strings in arrays</a></li>
<li><a href="#sec-repeating" id="toc-sec-repeating" class="nav-link" data-scroll-target="#sec-repeating">7.6 Repeating elements</a></li>
<li><a href="#resampling-with-and-without-replacement" id="toc-resampling-with-and-without-replacement" class="nav-link" data-scroll-target="#resampling-with-and-without-replacement">7.7 Resampling with and without replacement</a></li>
<li><a href="#conclusion" id="toc-conclusion" class="nav-link" data-scroll-target="#conclusion"><span class="header-section-number">7.8</span> Conclusion</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span id="sec-sampling-tools" class="quarto-section-identifier"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="introduction" class="level2" data-number="7.1">
<h2 data-number="7.1" class="anchored" data-anchor-id="introduction"><span class="header-section-number">7.1</span> Introduction</h2>
<p>Now you have some experience with Python, probabilities and resampling, it is time to introduce some useful tools for our experiments and programs.</p>
<div id="nte-sampling_tools" class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note 7.1: Notebook: Sampling tools
</div>
</div>
<div class="callout-body-container callout-body">
<div class="nb-links">
<p><a class="notebook-link" href="notebooks/sampling_tools.ipynb">Download notebook</a> <a class="interact-button" href="./interact/lab/index.html?path=sampling_tools.ipynb">Interact</a></p>
</div>
</div>
</div>
<div class="nb-start" name="sampling_tools" title="Sampling tools">
</div>
</section>
<section id="samples-and-labels-and-strings" class="level2" data-number="7.2">
<h2 data-number="7.2" class="anchored" data-anchor-id="samples-and-labels-and-strings">7.2 Samples and labels and strings</h2>
<p>Thus far we have used numbers such as 1 and 0 and 10 to represent the elements we are sampling from. For example, in <a href="resampling_with_code2.html" class="quarto-xref"><span>Chapter 6</span></a>, we were simulating the chance of a particular juror being black, given that 26% of the eligible jurors in the county were black. We used <em>integers</em> for that task, where we started with all the integers from 0 through 99, and asked NumPy to select values at random from those integers. When NumPy selected an integer from 0 through 25, we chose to label the resulting simulated juror as black — there are 26 integers in the range 0 through 25, so there is a 26% chance that any one integer will be in that range. If the integer was from 26 through 99, the simulated juror was white (there are 74 integers in the range 26 through 99).</p>
<p>Here is the process of simulating a single juror, adapted from <a href="resampling_with_code2.html#sec-random-zero-through-ninety-nine" class="quarto-xref"><span>Section 6.3.3</span></a>:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Ask Numpy for a random number generator.</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>rnd <span class="op">=</span> np.random.default_rng()</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="co"># All the integers from 0 up to, but not including 100.</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>zero_thru_99 <span class="op">=</span> np.arange(<span class="dv">100</span>)</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Get one random numbers from 0 through 99</span></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>a <span class="op">=</span> rnd.choice(zero_thru_99)</span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Show the result</span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>a</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.int64(59)</code></pre>
</div>
</div>
<p>After that, we have to unpack our labeling of 0 through 25 as being “black” and 26 through 99 as being “white”. We might do that like this:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>this_juror_is_black <span class="op">=</span> a <span class="op"><</span> <span class="dv">26</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>this_juror_is_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.False_</code></pre>
</div>
</div>
<p>This all works as we want it to, but it’s just a little bit difficult to remember the coding (less than 26 means “black”, greater than 25 means “white”). We had to use that coding because we committed ourselves to using random numbers to simulate the outcomes.</p>
<p>However, Python can also store bits of text, called <em>strings</em>. Values that are bits of text can be very useful because the text values can be memorable labels for the entities we are sampling from, in our simulations.</p>
<p>Before we get to strings, let us consider the different types of value we have seen so far.</p>
</section>
<section id="sec-types-values" class="level2" data-number="7.3">
<h2 data-number="7.3" class="anchored" data-anchor-id="sec-types-values">7.3 Types of values in Python</h2>
<div class="python">
<p>You have already come across the idea that Python values can be integers (positive or negative whole numbers), like this:</p>
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>v <span class="op">=</span> <span class="dv">10</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>v</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Here the variable <code>v</code> holds the value. We can see what type of value <code>v</code> holds by using the <code>type</code> function:</p>
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="bu">type</span>(v)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Python can also have <em>floating point</em> values. These are values with a decimal point — numbers that do not have to be integers, but also can be any value between the integers. These floating point values are of type <code>float</code>:</p>
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>f <span class="op">=</span> <span class="fl">10.1</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="bu">type</span>(f)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<section id="sec-arrays" class="level3" data-number="7.3.1">
<h3 data-number="7.3.1" class="anchored" data-anchor-id="sec-arrays">7.3.1 Numpy arrays</h3>
<p>You have also seen that Numpy contains another type, the <em>array</em>. An array is a value that contains a sequence of values. For example, here is an array of integers:</p>
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>arr <span class="op">=</span> np.array([<span class="dv">0</span>, <span class="dv">10</span>, <span class="dv">99</span>, <span class="dv">4</span>])</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>arr</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Notice that this value <code>arr</code> is of type <code>np.ndarray</code>:</p>
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="bu">type</span>(arr)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>The array has its own internal record of what type of values it holds. This is called the array <code>dtype</code>:</p>
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>arr.dtype</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>The array <code>dtype</code> records the type of value stored in the array. All values in the array must be of this type, and all values in the array are therefore of the same type.</p>
<p>The array above contains integers, but we can also make arrays containing floating point values:</p>
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>float_arr <span class="op">=</span> np.array([<span class="fl">0.1</span>, <span class="fl">10.1</span>, <span class="fl">99.0</span>, <span class="fl">4.3</span>])</span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>float_arr</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>float_arr.dtype</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="sec-lists" class="level3" data-number="7.3.2">
<h3 data-number="7.3.2" class="anchored" data-anchor-id="sec-lists">7.3.2 Lists</h3>
<p>We have elided past another Python type, the <em>list</em>. In fact we have already used lists in making arrays. For example, here we make an array with four values:</p>
<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>np.array([<span class="dv">0</span>, <span class="dv">10</span>, <span class="dv">99</span>, <span class="dv">4</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>We could also write the statement above in two steps:</p>
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>my_list <span class="op">=</span> [<span class="dv">0</span>, <span class="dv">10</span>, <span class="dv">99</span>, <span class="dv">4</span>]</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>np.array(my_list)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>In the first statement — <code>my_list = [0, 10, 99, 4]</code> — we construct a <em>list</em> — a container for the four values. Let’s look at the <code>my_list</code> value:</p>
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>my_list</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Notice that we do not see <code>array</code> in the display — this is not an array but a list:</p>
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="bu">type</span>(my_list)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>A list is a basic Python type. We can construct it by using the square brackets notation that you see above; we start with <code>[</code>, then we put the values we want to go in the list, separated by commas, followed by <code>]</code>. Here is another list:</p>
<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Creating another list.</span></span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>list_2 <span class="op">=</span> [<span class="dv">5</span>, <span class="dv">10</span>, <span class="dv">20</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>As you saw, we have been building arrays by building lists, and then passing the list to the <code>np.array</code> function, to create an array.</p>
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>list_again <span class="op">=</span> [<span class="dv">100</span>, <span class="dv">10</span>, <span class="dv">0</span>]</span>
<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>np.array(list_again)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Of course, we can do this one line, as we have been doing up till now, by constructing the list inside the parentheses of the function. So, the following cell has just the same output as the cell above:</p>
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Constructing the list inside the function brackets.</span></span>
<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>np.array([<span class="dv">100</span>, <span class="dv">10</span>, <span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Lists are like arrays in that they are values that contain values, but they are unlike arrays in various ways — that we will not go into now. We often use lists to construct sequences into lists to turn them into arrays. For our purposes, and particularly for our calculations, arrays are much more useful and efficient than lists.</p>
</section>
</div>
<!---
End of Python section
-->
<!---
End of R section.
-->
</section>
<section id="sec-intro-to-strings" class="level2" data-number="7.4">
<h2 data-number="7.4" class="anchored" data-anchor-id="sec-intro-to-strings">7.4 String values</h2>
<p>So far, all the values you have seen in Python arrays have been numbers. Now we get on to values that are bits of text. These are called <em>strings</em>.</p>
<p>Here is a single Python string value:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>s <span class="op">=</span> <span class="st">"Resampling"</span></span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>s</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>'Resampling'</code></pre>
</div>
</div>
<p>What is the <code>type</code> of the new bit-of-text value <code>s</code>?</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="bu">type</span>(s)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code><class 'str'></code></pre>
</div>
</div>
<p>The Python <code>str</code> value is a bit of text, and therefore consists of a sequence of characters.</p>
<p>As arrays are containers for other things, such as numbers, strings are containers for characters.</p>
<div class="python">
<p>As we can find the number of elements in an array (<a href="resampling_with_code2.html#sec-array-length" class="quarto-xref"><span>Section 6.5</span></a>), we can find the number of characters in a string with the <code>len</code> function:</p>
<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Number of characters in s</span></span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="bu">len</span>(s)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div class="python">
<p>As we can <em>index</em> into array values to get individual elements (<a href="resampling_with_code2.html#sec-array-indexing" class="quarto-xref"><span>Section 6.6</span></a>), we can index into string values to get individual characters:</p>
<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Get the second character of the string</span></span>
<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Remember, Python's index positions start at 0.</span></span>
<span id="cb25-3"><a href="#cb25-3" aria-hidden="true" tabindex="-1"></a>second_char <span class="op">=</span> s[<span class="dv">1</span>]</span>
<span id="cb25-4"><a href="#cb25-4" aria-hidden="true" tabindex="-1"></a>second_char</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="strings-in-s" class="level2" data-number="7.5">
<h2 data-number="7.5" class="anchored" data-anchor-id="strings-in-s">7.5 Strings in arrays</h2>
<p>As we can store numbers as elements in arrays, we can also store strings as array elements.</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Just for clarity, make the list first.</span></span>
<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Lists can also contain strings.</span></span>
<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a>list_of_strings <span class="op">=</span> [<span class="st">'Julian'</span>, <span class="st">'Lincoln'</span>, <span class="st">'Simon'</span>]</span>
<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Then pass the list to np.array to make the array.</span></span>
<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a>arr_of_strings <span class="op">=</span> np.array(list_of_strings)</span>
<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a>arr_of_strings</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['Julian', 'Lincoln', 'Simon'], dtype='<U7')</code></pre>
</div>
</div>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can also create the list and the array in one line,</span></span>
<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a><span class="co"># as we have been doing up til now.</span></span>
<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a>arr_of_strings <span class="op">=</span> np.array([<span class="st">'Julian'</span>, <span class="st">'Lincoln'</span>, <span class="st">'Simon'</span>])</span>
<span id="cb28-4"><a href="#cb28-4" aria-hidden="true" tabindex="-1"></a>arr_of_strings</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['Julian', 'Lincoln', 'Simon'], dtype='<U7')</code></pre>
</div>
</div>
<div class="python">
<p>Notice the array <code>dtype</code>:</p>
<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a>arr_of_strings.dtype</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>The <code>U</code> in the <code>dtype</code> tells you that the elements in the array are <a href="https://en.wikipedia.org/wiki/Unicode">Unicode</a> strings (Unicode is a computer representation of text characters). The number after the <code>U</code> gives the maximum number of characters for any string in the array, here set to the length of the longest string when we created the array.</p>
<div class="callout callout-style-default callout-warning callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Take care with Numpy string arrays
</div>
</div>
<div class="callout-body-container callout-body">
<p>It is easy to run into trouble with Numpy string arrays where the elements have a maximum length, as here. Remember, the <code>dtype</code> of the array tells you what type of element the array can hold. Here the <code>dtype</code> is telling you that the array can hold strings of maximum length 7 characters. Now imagine trying to put a longer string into the array — what do you think would happen?</p>
<p>This happens:</p>
<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a><span class="co"># An array of small strings.</span></span>
<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a>small_strings <span class="op">=</span> np.array([<span class="st">'six'</span>, <span class="st">'one'</span>, <span class="st">'two'</span>])</span>
<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a>small_strings.dtype</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Set a new value for the first element (first string).</span></span>
<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>small_strings[<span class="dv">0</span>] <span class="op">=</span> <span class="st">'seven'</span></span>
<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a>small_strings</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Numpy truncates the new string to match the original maximum length.</p>
<p>For that reason, it is often useful to instruct Numpy that you want to use effectively infinite length strings, by specifying the array <code>dtype</code> as <code>object</code> <em>when you make the array</em>, like this:</p>
<div class="sourceCode cell-code" id="cb33"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a><span class="co"># An array of small strings, but this time, tell Numpy</span></span>
<span id="cb33-2"><a href="#cb33-2" aria-hidden="true" tabindex="-1"></a><span class="co"># that the strings should be of effectively infinite length.</span></span>
<span id="cb33-3"><a href="#cb33-3" aria-hidden="true" tabindex="-1"></a>small_strings_better <span class="op">=</span> np.array([<span class="st">'six'</span>, <span class="st">'one'</span>, <span class="st">'two'</span>], dtype<span class="op">=</span><span class="bu">object</span>)</span>
<span id="cb33-4"><a href="#cb33-4" aria-hidden="true" tabindex="-1"></a>small_strings_better</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Notice that the code uses a <em>named function argument</em> (<a href="resampling_with_code.html#sec-named-arguments" class="quarto-xref"><span>Section 5.8</span></a>), to specify to <code>np.array</code> that the array elements should be of type <code>object</code>. This type can store any Python value, and so, when the array is storing strings, it will use Python’s own string values as elements, rather than the more efficient but more fragile Unicode strings that Numpy uses by default.</p>
<div class="sourceCode cell-code" id="cb34"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb34-1"><a href="#cb34-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Set a new value for the first element in the new array.</span></span>
<span id="cb34-2"><a href="#cb34-2" aria-hidden="true" tabindex="-1"></a>small_strings_better[<span class="dv">0</span>] <span class="op">=</span> <span class="st">'seven'</span></span>
<span id="cb34-3"><a href="#cb34-3" aria-hidden="true" tabindex="-1"></a>small_strings_better</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<!---
End of warning
-->
</div>
</div>
<!---
End of Python section
-->
</div>
<p>As for any array, you can select elements with <em>indexing</em>. When you select an element with a given position (index), you get the <em>string</em> at at that position:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb35"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb35-1"><a href="#cb35-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Julian Lincoln Simon's second name.</span></span>
<span id="cb35-2"><a href="#cb35-2" aria-hidden="true" tabindex="-1"></a><span class="co"># (Remember, Python's positions start at 0).</span></span>
<span id="cb35-3"><a href="#cb35-3" aria-hidden="true" tabindex="-1"></a>middle_name <span class="op">=</span> arr_of_strings[<span class="dv">1</span>]</span>
<span id="cb35-4"><a href="#cb35-4" aria-hidden="true" tabindex="-1"></a>middle_name</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.str_('Lincoln')</code></pre>
</div>
</div>
<p>As for numbers, we can compare strings with, for example, the <code>==</code> operator, that asks whether the two strings are equal:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb37"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb37-1"><a href="#cb37-1" aria-hidden="true" tabindex="-1"></a>middle_name <span class="op">==</span> <span class="st">'Lincoln'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>True</code></pre>
</div>
</div>
</section>
<section id="sec-repeating" class="level2" data-number="7.6">
<h2 data-number="7.6" class="anchored" data-anchor-id="sec-repeating">7.6 Repeating elements</h2>
<p>Now let us go back to the problem of selecting black and white jurors.</p>
<p>We started with the strategy of using numbers 0 through 25 to mean “black” jurors, and 26 through 99 to mean “white” jurors. We selected values at random from 0 through 99, and then worked out whether the number meant a “black” juror (was less than 26) or a “white” juror (was greater than 25).</p>
<p>It would be good to use strings instead of numbers to identify the potential jurors. Then we would not have to remember our coding of 0 through 25 and 26 through 99.</p>
<p>If only there was a way to make an array of 100 strings, where 26 of the strings were “black” and 74 were “white”. Then we could select randomly from that array, and it would be immediately obvious that we had a “black” or “white” juror.</p>
<p>Luckily, of course, we can do that, by using the <code>np.repeat</code> function to construct the array.</p>
<p>Here is how that works:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb39"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb39-1"><a href="#cb39-1" aria-hidden="true" tabindex="-1"></a><span class="co"># The values that we will repeat to fill up the larger array.</span></span>
<span id="cb39-2"><a href="#cb39-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Use a list to store the sequence of values.</span></span>
<span id="cb39-3"><a href="#cb39-3" aria-hidden="true" tabindex="-1"></a>juror_types <span class="op">=</span> [<span class="st">'black'</span>, <span class="st">'white'</span>]</span>
<span id="cb39-4"><a href="#cb39-4" aria-hidden="true" tabindex="-1"></a><span class="co"># The number of times we want to repeat "black" and "white".</span></span>
<span id="cb39-5"><a href="#cb39-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Use a list to store the sequence of values.</span></span>
<span id="cb39-6"><a href="#cb39-6" aria-hidden="true" tabindex="-1"></a>repeat_nos <span class="op">=</span> [<span class="dv">26</span>, <span class="dv">74</span>]</span>
<span id="cb39-7"><a href="#cb39-7" aria-hidden="true" tabindex="-1"></a><span class="co"># Repeat "black" 26 times and "white" 74 times.</span></span>
<span id="cb39-8"><a href="#cb39-8" aria-hidden="true" tabindex="-1"></a><span class="co"># We have passed two lists here, but we could also have passed</span></span>
<span id="cb39-9"><a href="#cb39-9" aria-hidden="true" tabindex="-1"></a><span class="co"># arrays - the Numpy repeat function converts the lists to arrays</span></span>
<span id="cb39-10"><a href="#cb39-10" aria-hidden="true" tabindex="-1"></a><span class="co"># before it builds the repeats.</span></span>
<span id="cb39-11"><a href="#cb39-11" aria-hidden="true" tabindex="-1"></a>jury_pool <span class="op">=</span> np.repeat(juror_types, repeat_nos)</span>
<span id="cb39-12"><a href="#cb39-12" aria-hidden="true" tabindex="-1"></a><span class="co"># Show the result</span></span>
<span id="cb39-13"><a href="#cb39-13" aria-hidden="true" tabindex="-1"></a>jury_pool</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white'], dtype='<U5')</code></pre>
</div>
</div>
<p>We can use this array of repeats of strings, to sample from. The result is easier to grasp, because we are using the string labels, instead of numbers:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb41"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb41-1"><a href="#cb41-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Select one juror at random from the black / white pool.</span></span>
<span id="cb41-2"><a href="#cb41-2" aria-hidden="true" tabindex="-1"></a>one_juror <span class="op">=</span> rnd.choice(jury_pool)</span>
<span id="cb41-3"><a href="#cb41-3" aria-hidden="true" tabindex="-1"></a>one_juror</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.str_('white')</code></pre>
</div>
</div>
<p>We can select our full jury of 12 jurors, and see the results in a more obvious form:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb43"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb43-1"><a href="#cb43-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Select 12 jurors at random from the black / white pool.</span></span>
<span id="cb43-2"><a href="#cb43-2" aria-hidden="true" tabindex="-1"></a>one_jury <span class="op">=</span> rnd.choice(jury_pool, <span class="dv">12</span>)</span>
<span id="cb43-3"><a href="#cb43-3" aria-hidden="true" tabindex="-1"></a>one_jury</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['white', 'white', 'white', 'white', 'black', 'white', 'black',
'white', 'white', 'black', 'black', 'white'], dtype='<U5')</code></pre>
</div>
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Using the <code>size</code> argument to <code>rnd.choice</code>
</div>
</div>
<div class="callout-body-container callout-body">
<p>In the code above, we have specified the <em>size</em> of the sample we want (12) with the second argument to <code>rnd.choice</code>. As you saw in <a href="resampling_with_code.html#sec-named-arguments" class="quarto-xref"><span>Section 5.8</span></a>, we can also give names to the function arguments, in this case, to make it clearer what we mean by “12” in the code above. In fact, from now on, that is what we will do; we will specify the <em>size</em> of our sample by using the <em>name</em> for the function argument to <code>rnd.choice</code> — <code>size</code> — like this:</p>
<div class="sourceCode cell-code" id="cb45"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb45-1"><a href="#cb45-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Select 12 jurors at random from the black / white pool.</span></span>
<span id="cb45-2"><a href="#cb45-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Specify the sample size using the "size" named argument.</span></span>
<span id="cb45-3"><a href="#cb45-3" aria-hidden="true" tabindex="-1"></a>one_jury <span class="op">=</span> rnd.choice(jury_pool, size<span class="op">=</span><span class="dv">12</span>)</span>
<span id="cb45-4"><a href="#cb45-4" aria-hidden="true" tabindex="-1"></a>one_jury</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<p>We can use <code>==</code> on the array to get <code>True</code> values where the juror was “black” and <code>False</code> values otherwise:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb46"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb46-1"><a href="#cb46-1" aria-hidden="true" tabindex="-1"></a>are_black <span class="op">=</span> one_jury <span class="op">==</span> <span class="st">'black'</span></span>
<span id="cb46-2"><a href="#cb46-2" aria-hidden="true" tabindex="-1"></a>are_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array([ True, False, False, False, True, False, True, False, False,
False, False, False])</code></pre>
</div>
</div>
<p>Finally, we can <code>np.sum</code> to find the number of black jurors (<a href="resampling_with_code.html#sec-count-with-sum" class="quarto-xref"><span>Section 5.14</span></a>):</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb48"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb48-1"><a href="#cb48-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Number of black jurors in this simulated jury.</span></span>
<span id="cb48-2"><a href="#cb48-2" aria-hidden="true" tabindex="-1"></a>n_black <span class="op">=</span> np.<span class="bu">sum</span>(are_black)</span>
<span id="cb48-3"><a href="#cb48-3" aria-hidden="true" tabindex="-1"></a>n_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.int64(3)</code></pre>
</div>
</div>
<p>Putting that all together, this is our new procedure to select one jury and count the number of black jurors:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb50"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb50-1"><a href="#cb50-1" aria-hidden="true" tabindex="-1"></a>one_jury <span class="op">=</span> rnd.choice(jury_pool, size<span class="op">=</span><span class="dv">12</span>)</span>
<span id="cb50-2"><a href="#cb50-2" aria-hidden="true" tabindex="-1"></a>are_black <span class="op">=</span> one_jury <span class="op">==</span> <span class="st">'black'</span></span>
<span id="cb50-3"><a href="#cb50-3" aria-hidden="true" tabindex="-1"></a>n_black <span class="op">=</span> np.<span class="bu">sum</span>(are_black)</span>
<span id="cb50-4"><a href="#cb50-4" aria-hidden="true" tabindex="-1"></a>n_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.int64(3)</code></pre>
</div>
</div>
<p>Or we can be even more compact by putting several statements together into one line:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb52"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb52-1"><a href="#cb52-1" aria-hidden="true" tabindex="-1"></a><span class="co"># The same as above, but on one line.</span></span>
<span id="cb52-2"><a href="#cb52-2" aria-hidden="true" tabindex="-1"></a>n_black <span class="op">=</span> np.<span class="bu">sum</span>(rnd.choice(jury_pool, size<span class="op">=</span><span class="dv">12</span>) <span class="op">==</span> <span class="st">'black'</span>)</span>
<span id="cb52-3"><a href="#cb52-3" aria-hidden="true" tabindex="-1"></a>n_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.int64(1)</code></pre>
</div>
</div>
</section>
<section id="resampling-with-and-without-replacement" class="level2" data-number="7.7">
<h2 data-number="7.7" class="anchored" data-anchor-id="resampling-with-and-without-replacement">7.7 Resampling with and without replacement</h2>
<p>Now let us return to the details of Robert Swain’s case, that you first saw in <a href="resampling_with_code2.html" class="quarto-xref"><span>Chapter 6</span></a>.</p>
<p>We looked at the composition of Robert Swain’s 12-person jury — but in fact, by law, that does not have to be representative of the eligible jurors. The 12-person jury is drawn from a jury <em>panel</em>, of 100 people, and this should, in turn, be drawn from the population of all eligible jurors in the county, consisting, at the time, of “all male citizens in the community over 21 who are reputed to be honest, intelligent men and are esteemed for their integrity, good character and sound judgment.” So, unless there was some bias against black jurors, we might expect the 100-person jury panel to be a plausibly random sample of the eligible jurors, of whom 26% were black. See <a href="https://supreme.justia.com/cases/federal/us/380/202">the Supreme Court case judgement</a> for details.</p>
<p>In fact, in Robert Swain’s trial, there were 8 black members in the 100-person jury panel. We will leave it to you to adapt the simulation from <a href="resampling_with_code2.html" class="quarto-xref"><span>Chapter 6</span></a> to ask the question — is 8% surprising as a random sample from a population with 26% black people?</p>
<p>But we have a different question: given that 8 out of 100 of the jury panel were black, is it surprising that none of the 12-person jury were black? As usual, we can answer that question with simulation.</p>
<p>Let’s think about what a single simulated jury selection would look like.</p>
<p>First we compile a representation of the actual jury panel, using the tools we have used above.</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb54"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb54-1"><a href="#cb54-1" aria-hidden="true" tabindex="-1"></a>juror_types <span class="op">=</span> [<span class="st">'black'</span>, <span class="st">'white'</span>]</span>
<span id="cb54-2"><a href="#cb54-2" aria-hidden="true" tabindex="-1"></a><span class="co"># in fact there were 8 black jurors and 92 white jurors.</span></span>
<span id="cb54-3"><a href="#cb54-3" aria-hidden="true" tabindex="-1"></a>panel_nos <span class="op">=</span> [<span class="dv">8</span>, <span class="dv">92</span>]</span>
<span id="cb54-4"><a href="#cb54-4" aria-hidden="true" tabindex="-1"></a>jury_panel <span class="op">=</span> np.repeat(juror_types, panel_nos)</span>
<span id="cb54-5"><a href="#cb54-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Show the result</span></span>
<span id="cb54-6"><a href="#cb54-6" aria-hidden="true" tabindex="-1"></a>jury_panel</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white'], dtype='<U5')</code></pre>
</div>
</div>
<p>Now consider taking a 12-person jury at random from this panel. We select the first juror at random, so that juror has an 8 out of 100 chance of being black. But when we select the second jury member, the situation has changed slightly. We can’t select the first juror again, so our panel is now 99 people. If our first juror was black, then the chances of selecting another black juror next are not 8 out of 100, but 7 out of 99 — a smaller chance. The problem is, as we shall see in more detail later, the chances of getting a black juror as the second, and third and fourth members of the jury depend on whether we selected a black juror as the first and second and third jury members. At its most extreme, imagine we had already selected eight jurors, and by some strange chance, all eight were black. Now our chances of selecting a black juror as the ninth juror are zero — there are no black jurors left to select from the panel.</p>
<p>In this case we are selecting jurors from the panel <em>without replacement</em>, meaning, that once we have selected a particular juror, we cannot select them again, and we do not put them back into the panel when we select our next juror.</p>
<p>This is the probability equivalent of the situation when you are dealing a hand of cards. Let’s say someone is dealing you, and you only, a hand of five cards. You get an ace as your first card. Your chances of getting an ace as your first card were just the number of aces in the deck divided by the number of cards — four in 52 – <span class="math inline">\(\frac{4}{52}\)</span>. But for your second card, the probability has changed, because there is one less ace remaining in the pack, and one less card, so your chances of getting an ace as your second card are now <span class="math inline">\(\frac{3}{51}\)</span>. This is sampling without replacement — in a normal game, you can’t get the same card twice. Of course, you could imagine getting a hand where you sampled <em>with replacement</em>. In that case, you’d get a card, you’d write down what it was, and you’d give the card back to the dealer, who would <em>replace</em> the card in the deck, shuffle again, and give you another card.</p>
<p>As you can see, the chances change if you are sampling with or without replacement, and the kind of sampling you do, will dictate how you model your chances in your simulations.</p>
<p>Because this distinction is so common, and so important, the machinery you have already seen in <code>rnd.choice</code> has simple ways for you to select your sampling type. You have already seen sampling <em>with replacement</em>, and it looks like this:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb56"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb56-1"><a href="#cb56-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Take a sample of 12 jurors from the panel *with replacement*</span></span>
<span id="cb56-2"><a href="#cb56-2" aria-hidden="true" tabindex="-1"></a><span class="co"># With replacement is the default for `rnd.choice`.</span></span>
<span id="cb56-3"><a href="#cb56-3" aria-hidden="true" tabindex="-1"></a>strange_jury <span class="op">=</span> rnd.choice(jury_panel, size<span class="op">=</span><span class="dv">12</span>)</span>
<span id="cb56-4"><a href="#cb56-4" aria-hidden="true" tabindex="-1"></a>strange_jury</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['white', 'white', 'white', 'black', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white'], dtype='<U5')</code></pre>
</div>
</div>
<p>This is a strange jury, because it can select any member of the jury pool more than once. Perhaps that juror would have to fill two (or more!) seats, or run quickly between them. But of course, that is not how juries are selected. They are selected <em>without replacement</em>:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb58"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb58-1"><a href="#cb58-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Take a sample of 12 jurors from the panel *without replacement*</span></span>
<span id="cb58-2"><a href="#cb58-2" aria-hidden="true" tabindex="-1"></a>ok_jury <span class="op">=</span> rnd.choice(jury_panel, <span class="dv">12</span>, replace<span class="op">=</span><span class="va">False</span>)</span>
<span id="cb58-3"><a href="#cb58-3" aria-hidden="true" tabindex="-1"></a>ok_jury</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>array(['white', 'white', 'white', 'white', 'black', 'white', 'white',
'white', 'white', 'white', 'white', 'white'], dtype='<U5')</code></pre>
</div>
</div>
<div id="nte-eol-comments" class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note 7.2: Comments at the end of lines
</div>
</div>
<div class="callout-body-container callout-body">
<p>You have already seen comment lines. These are lines beginning with <code>#</code>, to signal to Python that the rest of the line is text for humans to read, but Python to ignore.</p>
<div class="sourceCode cell-code" id="cb60"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb60-1"><a href="#cb60-1" aria-hidden="true" tabindex="-1"></a><span class="co"># This is a comment. Python ignores this line.</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>You can also put comments at the <em>end of code lines</em>, by finishing the code part of the line, and then putting a <code>#</code>, followed by more text. Again, Python will ignore everything after the <code>#</code> as a text for humans, but not for Python.</p>
<div class="sourceCode cell-code" id="cb61"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb61-1"><a href="#cb61-1" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">'Hello'</span>) <span class="co"># This is a comment at the end of the line.</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<p>To finish the procedure for simulating a single jury selection, we count the number of black jurors:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb62"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb62-1"><a href="#cb62-1" aria-hidden="true" tabindex="-1"></a>n_black <span class="op">=</span> np.<span class="bu">sum</span>(ok_jury <span class="op">==</span> <span class="st">'black'</span>) <span class="co"># How many black jurors?</span></span>
<span id="cb62-2"><a href="#cb62-2" aria-hidden="true" tabindex="-1"></a>n_black</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>np.int64(1)</code></pre>
</div>
</div>
<p>Now we have the procedure for one simulated trial, here is the procedure for 10000 simulated trials.</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb64"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb64-1"><a href="#cb64-1" aria-hidden="true" tabindex="-1"></a>counts <span class="op">=</span> np.zeros(<span class="dv">10000</span>)</span>
<span id="cb64-2"><a href="#cb64-2" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> np.arange(<span class="dv">10000</span>):</span>
<span id="cb64-3"><a href="#cb64-3" aria-hidden="true" tabindex="-1"></a> <span class="co"># Single trial procedure</span></span>
<span id="cb64-4"><a href="#cb64-4" aria-hidden="true" tabindex="-1"></a> jury <span class="op">=</span> rnd.choice(jury_panel, size<span class="op">=</span><span class="dv">12</span>, replace<span class="op">=</span><span class="va">False</span>)</span>
<span id="cb64-5"><a href="#cb64-5" aria-hidden="true" tabindex="-1"></a> n_black <span class="op">=</span> np.<span class="bu">sum</span>(jury <span class="op">==</span> <span class="st">'black'</span>) <span class="co"># How many black jurors?</span></span>
<span id="cb64-6"><a href="#cb64-6" aria-hidden="true" tabindex="-1"></a> <span class="co"># Store the result</span></span>
<span id="cb64-7"><a href="#cb64-7" aria-hidden="true" tabindex="-1"></a> counts[i] <span class="op">=</span> n_black</span>
<span id="cb64-8"><a href="#cb64-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb64-9"><a href="#cb64-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Number of juries with 0 black jurors.</span></span>
<span id="cb64-10"><a href="#cb64-10" aria-hidden="true" tabindex="-1"></a>zero_black <span class="op">=</span> np.<span class="bu">sum</span>(counts <span class="op">==</span> <span class="dv">0</span>)</span>
<span id="cb64-11"><a href="#cb64-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Proportion</span></span>
<span id="cb64-12"><a href="#cb64-12" aria-hidden="true" tabindex="-1"></a>p_zero_black <span class="op">=</span> zero_black <span class="op">/</span> <span class="dv">10000</span></span>
<span id="cb64-13"><a href="#cb64-13" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(p_zero_black)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>0.3421</code></pre>
</div>
</div>
<p>We have found that, when there are only 8% black jurors in the jury panel, having no black jurors in the final jury happens about 34% of the time, even in this case, where the jury is selected completely at random from the jury panel.</p>
<p>We should look for the main source of bias in the initial selection of the jury panel, not in the selection of the jury from the panel.</p>
<!---
End of notebook
-->
<div class="nb-end">
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
End of notebook: Sampling tools
</div>
</div>
<div class="callout-body-container callout-body">
<p><code>sampling_tools</code> starts at <a href="#nte-sampling_tools" class="quarto-xref">Note <span>7.1</span></a>.</p>
</div>
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
With or without replacement for the original jury selection
</div>
</div>
<div class="callout-body-container callout-body">
<p>You may have noticed in <a href="resampling_with_code2.html" class="quarto-xref"><span>Chapter 6</span></a> that we were sampling Robert Swain’s jury from the eligible pool of jurors, <em>with replacement</em>. You might reasonably ask whether we should have selected from the eligible jurors <em>without replacement</em>, given that the same juror cannot serve more than once in the same jury, and therefore, the same argument applies there as here.</p>
<p>The trick there was that we were selecting from a very large pool of many thousand eligible jurors, of whom 26% were black. Let’s say there were 10,000 eligible jurors, of whom 2,600 were black. When selecting the first juror, there is exactly a 2,600 in 10,000 chance of getting a black juror — 26%. If we do get a black juror first, then the chance that the second juror will be black has changed slightly, 2,599 in 9,999. But these changes are very small; even if we select eleven black jurors out of eleven, when we come to the twelfth juror, we still have a 2,589 out of 9,989 chance of getting another black juror, and that works out at a 25.92% chance — hardly changed from the original 26%. So yes, you’d be right, we really should have compiled our population of 2,600 black jurors and 7,400 white jurors, and then sampled without replacement from that population, but as the resulting sample probabilities will be very similar to the simpler sampling with replacement, we chose to try and slide that one quietly past you, in the hope you would forgive us when you realized.</p>
</div>
</div>
</section>
<section id="conclusion" class="level2" data-number="7.8">
<h2 data-number="7.8" class="anchored" data-anchor-id="conclusion"><span class="header-section-number">7.8</span> Conclusion</h2>
<p>This chapter introduced you to the idea of strings — values in Python that store bits of text. Strings are very useful as labels for the entities we are sampling from, when we do our simulations. Strings are particularly useful when we use them with arrays, and one way we often do that is to build up arrays of strings to sample from, using the <span class="python"><code>np.repeat</code></span> function.</p>
<p>There is a fundamental distinction between two different types of sampling — sampling <em>with replacement</em>, where we draw an element from a larger pool, then put that element back before drawing again, and sampling <em>without replacement</em>, where we remove the element from the remaining pool when we draw it into the sample. As we will see later, it is often a judgment call which of these two types of sampling is a more reasonable model of the world you are trying to simulate.</p>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');