-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathutil.py
232 lines (173 loc) · 7.79 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
import pandas as pd
import _pickle as cPickle
from sklearn.preprocessing import LabelEncoder
def recognize_features_type(df, class_name):
integer_features = list(df.select_dtypes(include=['int64']).columns)
double_features = list(df.select_dtypes(include=['float64']).columns)
string_features = list(df.select_dtypes(include=['object']).columns)
type_features = {
'integer': integer_features,
'double': double_features,
'string': string_features,
}
features_type = dict()
for col in integer_features:
features_type[col] = 'integer'
for col in double_features:
features_type[col] = 'double'
for col in string_features:
features_type[col] = 'string'
return type_features, features_type
def set_discrete_continuous(features, type_features, class_name, discrete=None, continuous=None):
if discrete is None and continuous is None:
discrete = type_features['string']
continuous = type_features['integer'] + type_features['double']
if discrete is None and continuous is not None:
discrete = [f for f in features if f not in continuous]
continuous = list(set(continuous + type_features['integer'] + type_features['double']))
if continuous is None and discrete is not None:
continuous = [f for f in features if f not in discrete and (f in type_features['integer'] or f in type_features['double'])]
discrete = list(set(discrete + type_features['string']))
discrete = [f for f in discrete if f != class_name] + [class_name]
continuous = [f for f in continuous if f != class_name]
return discrete, continuous
def label_encode(df, columns, label_encoder=None):
df_le = df.copy(deep=True)
new_le = label_encoder is None
label_encoder = dict() if new_le else label_encoder
for col in columns:
if new_le:
le = LabelEncoder()
df_le[col] = le.fit_transform(df_le[col])
label_encoder[col] = le
else:
le = label_encoder[col]
df_le[col] = le.transform(df_le[col])
return df_le, label_encoder
def label_decode(df, columns, label_encoder):
df_de = df.copy(deep=True)
for col in columns:
le = label_encoder[col]
df_de[col] = le.inverse_transform(df_de[col])
return df_de
def get_closest(df, x, discrete, continuous, class_name, distance_function, k=100):
distances = list()
for z in df.to_dict('records'):
distances.append(distance_function(x, z, discrete, continuous, class_name))
return np.argsort(distances).tolist()[:k]
def get_closest_diffoutcome(df, x, discrete, continuous, class_name, blackbox, label_encoder, distance_function,
k=100, diff_out_ratio=0.1):
distances = list()
distances_0 = list()
idx0 = list()
distances_1 = list()
idx1 = list()
Z, _ = label_encode(df, discrete, label_encoder)
Z = Z.iloc[:, Z.columns != class_name].values
idx = 0
for z, z1 in zip(df.to_dict('records'), Z):
d = distance_function(x, z, discrete, continuous, class_name)
distances.append(d)
if blackbox.predict(z1.reshape(1, -1))[0] == 0:
distances_0.append(d)
idx0.append(idx)
else:
distances_1.append(d)
idx1.append(idx)
idx += 1
idx0 = np.array(idx0)
idx1 = np.array(idx1)
all_indexs = np.argsort(distances).tolist()[:k]
indexes0 = list(idx0[np.argsort(distances_0).tolist()[:k]])
indexes1 = list(idx1[np.argsort(distances_1).tolist()[:k]])
if 1.0 * len(set(all_indexs) & set(indexes0)) / len(all_indexs) < diff_out_ratio:
k_index = k - int(k * diff_out_ratio)
final_indexes = all_indexs[:k_index] + indexes0[:int(k * diff_out_ratio)]
elif 1.0 * len(set(all_indexs) & set(indexes1)) < diff_out_ratio:
k_index = k - int(k * diff_out_ratio)
final_indexes = all_indexs[:k_index] + indexes1[:int(k * diff_out_ratio)]
else:
final_indexes = all_indexs
return final_indexes
def generate_artificial_features(size, class_name, columns, features_type, discrete, continuous, ratio=0.25):
discrete_no_class = list(discrete)
discrete_no_class.remove(class_name)
num_art_features = int(np.round(ratio * (len(columns) - 1)))
num_disc_art_features = int(np.round(ratio * len(discrete_no_class)))
num_cont_art_features = max(0, num_art_features - num_disc_art_features)
disc_feature_values = dict()
for i in range(num_disc_art_features):
name = 'artificial_disc_%d' % i
num_diff_values = np.random.choice([2, 3, 4, 5, 10])
values = [j for j in range(num_diff_values)]
disc_feature_values[name] = values
cont_feature_fun = dict()
for i in range(num_cont_art_features):
name = 'artificial_cont_%d' % i
fnidx = np.random.choice(np.arange(4))
fn = [(np.random.chisquare, [1]),
(np.random.exponential, [1]),
(np.random.lognormal, [0, 1]),
(np.random.normal, [0, 1])][fnidx]
cont_feature_fun[name] = fn
artificial_data = list()
new_discrete = list()
for artificial_feature in disc_feature_values:
values = np.random.choice(disc_feature_values[artificial_feature], size).astype(int)
artificial_data.append(values)
features_type[artificial_feature] = 'integer'
discrete.append(artificial_feature)
columns.append(artificial_feature)
new_discrete.append(artificial_feature)
new_continuous = list()
for artificial_feature in cont_feature_fun:
fn = cont_feature_fun[artificial_feature][0]
params = cont_feature_fun[artificial_feature][1]
if len(params) == 1:
values = fn(params[0], size)
elif len(params) == 2:
values = fn(params[0], params[1], size)
artificial_data.append(values)
features_type[artificial_feature] = 'double'
continuous.append(artificial_feature)
columns.append(artificial_feature)
new_continuous.append(artificial_feature)
# AF = {
# 'AF': np.column_stack(artificial_data).tolist(),
# 'columns': columns,
# 'features_type': features_type,
# 'discrete': discrete,
# 'continuous': continuous
# }
# return AF
return map(list, map(None, *artificial_data)), new_discrete, new_continuous
def build_df2explain(bb, X, dataset):
columns = dataset['columns']
features_type = dataset['features_type']
discrete = dataset['discrete']
label_encoder = dataset['label_encoder']
y = bb.predict(X)
yX = np.concatenate((y.reshape(-1, 1), X), axis=1)
data = list()
for i, col in enumerate(columns):
data_col = yX[:, i]
data_col = data_col.astype(int) if col in discrete else data_col
data_col = data_col.astype(int) if features_type[col] == 'integer' else data_col
data.append(data_col)
# data = map(list, map(None, *data))
data = [[d[i] for d in data] for i in range(0, len(data[0]))]
dfZ = pd.DataFrame(data=data, columns=columns)
dfZ = label_decode(dfZ, discrete, label_encoder)
return dfZ
def dataframe2explain(X2E, dataset, idx_record2explain, blackbox):
# Dataset to explit to perform explanation (typically is the train or test set (real instances))
Z = cPickle.loads(cPickle.dumps(X2E))
# Select record to predict and explain
x = Z[idx_record2explain]
# Remove record to explain (optional) from dataset Z and convert into dataframe
# Z = np.delete(Z, idx_record2explain, axis=0)
dfZ = build_df2explain(blackbox, Z, dataset)
return dfZ, x
def get_diff_outcome(outcome, possible_outcomes):
return possible_outcomes[1] if outcome == possible_outcomes[0] else possible_outcomes[0]