-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
32 lines (26 loc) · 1.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import time
import math
import torch
start_time = time.time()
print('{:4.1f} s PyTorch version {}'.format(time.time() - start_time, torch.version.__version__))
print('{:4.1f} s CUDA version {}'.format(time.time() - start_time, torch.version.cuda))
try_to_use_cuda = 1
cuda_is_available = torch.cuda.is_available()
print('{:4.1f} s CUDA available {}'.format(time.time() - start_time, cuda_is_available))
# Choose the device.
device_str = 'cpu'
if try_to_use_cuda:
if cuda_is_available:
device_str = 'cuda'
device = torch.device(device_str)
print('{:4.1f} s device {}'.format(time.time() - start_time, device))
if device_str == 'cuda':
torch.cuda.init()
props = torch.cuda.get_device_properties(device)
print('{:4.1f} s CUDA GPU {}'.format(time.time() - start_time, props.name))
print('{:4.1f} s CUDA GPU RAM {:3.1f} GB'.format(time.time() - start_time, props.total_memory / math.pow(1024., 3)))
print('{:4.1f} s CUDA GPU processors {}'.format(time.time() - start_time, props.multi_processor_count))
print('{:4.1f} s CUDA device count {}'.format(time.time() - start_time, torch.cuda.device_count()))
print('{:4.1f} s CUDA current device {}'.format(time.time() - start_time, torch.cuda.current_device()))
torch.manual_seed(1)
print('{:4.1f} s {}'.format(time.time() - start_time, torch.rand(1).cuda()))