forked from wengong-jin/icml18-jtnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjtnn_dec.py
321 lines (265 loc) · 12.1 KB
/
jtnn_dec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
from mol_tree import Vocab, MolTree, MolTreeNode
from nnutils import create_var, GRU
from chemutils import enum_assemble
import copy
MAX_NB = 8
MAX_DECODE_LEN = 100
class JTNNDecoder(nn.Module):
def __init__(self, vocab, hidden_size, latent_size, embedding=None):
super(JTNNDecoder, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab.size()
self.vocab = vocab
if embedding is None:
self.embedding = nn.Embedding(self.vocab_size, hidden_size)
else:
self.embedding = embedding
#GRU Weights
self.W_z = nn.Linear(2 * hidden_size, hidden_size)
self.U_r = nn.Linear(hidden_size, hidden_size, bias=False)
self.W_r = nn.Linear(hidden_size, hidden_size)
self.W_h = nn.Linear(2 * hidden_size, hidden_size)
#Feature Aggregate Weights
self.W = nn.Linear(latent_size + hidden_size, hidden_size)
self.U = nn.Linear(latent_size + 2 * hidden_size, hidden_size)
#Output Weights
self.W_o = nn.Linear(hidden_size, self.vocab_size)
self.U_s = nn.Linear(hidden_size, 1)
#Loss Functions
self.pred_loss = nn.CrossEntropyLoss(size_average=False)
self.stop_loss = nn.BCEWithLogitsLoss(size_average=False)
def get_trace(self, node):
super_root = MolTreeNode("")
super_root.idx = -1
trace = []
dfs(trace, node, super_root)
return [(x.smiles, y.smiles, z) for x,y,z in trace]
def forward(self, mol_batch, mol_vec):
super_root = MolTreeNode("")
super_root.idx = -1
#Initialize
pred_hiddens,pred_mol_vecs,pred_targets = [],[],[]
stop_hiddens,stop_targets = [],[]
traces = []
for mol_tree in mol_batch:
s = []
dfs(s, mol_tree.nodes[0], super_root)
traces.append(s)
for node in mol_tree.nodes:
node.neighbors = []
#Predict Root
pred_hiddens.append(create_var(torch.zeros(len(mol_batch),self.hidden_size)))
pred_targets.extend([mol_tree.nodes[0].wid for mol_tree in mol_batch])
pred_mol_vecs.append(mol_vec)
max_iter = max([len(tr) for tr in traces])
padding = create_var(torch.zeros(self.hidden_size), False)
h = {}
for t in xrange(max_iter):
prop_list = []
batch_list = []
for i,plist in enumerate(traces):
if t < len(plist):
prop_list.append(plist[t])
batch_list.append(i)
cur_x = []
cur_h_nei,cur_o_nei = [],[]
for node_x,real_y,_ in prop_list:
#Neighbors for message passing (target not included)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != real_y.idx]
pad_len = MAX_NB - len(cur_nei)
cur_h_nei.extend(cur_nei)
cur_h_nei.extend([padding] * pad_len)
#Neighbors for stop prediction (all neighbors)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
pad_len = MAX_NB - len(cur_nei)
cur_o_nei.extend(cur_nei)
cur_o_nei.extend([padding] * pad_len)
#Current clique embedding
cur_x.append(node_x.wid)
#Clique embedding
cur_x = create_var(torch.LongTensor(cur_x))
cur_x = self.embedding(cur_x)
#Message passing
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
#Node Aggregate
cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
cur_o = cur_o_nei.sum(dim=1)
#Gather targets
pred_target,pred_list = [],[]
stop_target = []
for i,m in enumerate(prop_list):
node_x,node_y,direction = m
x,y = node_x.idx,node_y.idx
h[(x,y)] = new_h[i]
node_y.neighbors.append(node_x)
if direction == 1:
pred_target.append(node_y.wid)
pred_list.append(i)
stop_target.append(direction)
#Hidden states for stop prediction
cur_batch = create_var(torch.LongTensor(batch_list))
cur_mol_vec = mol_vec.index_select(0, cur_batch)
stop_hidden = torch.cat([cur_x,cur_o,cur_mol_vec], dim=1)
stop_hiddens.append( stop_hidden )
stop_targets.extend( stop_target )
#Hidden states for clique prediction
if len(pred_list) > 0:
batch_list = [batch_list[i] for i in pred_list]
cur_batch = create_var(torch.LongTensor(batch_list))
pred_mol_vecs.append( mol_vec.index_select(0, cur_batch) )
cur_pred = create_var(torch.LongTensor(pred_list))
pred_hiddens.append( new_h.index_select(0, cur_pred) )
pred_targets.extend( pred_target )
#Last stop at root
cur_x,cur_o_nei = [],[]
for mol_tree in mol_batch:
node_x = mol_tree.nodes[0]
cur_x.append(node_x.wid)
cur_nei = [h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors]
pad_len = MAX_NB - len(cur_nei)
cur_o_nei.extend(cur_nei)
cur_o_nei.extend([padding] * pad_len)
cur_x = create_var(torch.LongTensor(cur_x))
cur_x = self.embedding(cur_x)
cur_o_nei = torch.stack(cur_o_nei, dim=0).view(-1,MAX_NB,self.hidden_size)
cur_o = cur_o_nei.sum(dim=1)
stop_hidden = torch.cat([cur_x,cur_o,mol_vec], dim=1)
stop_hiddens.append( stop_hidden )
stop_targets.extend( [0] * len(mol_batch) )
#Predict next clique
pred_hiddens = torch.cat(pred_hiddens, dim=0)
pred_mol_vecs = torch.cat(pred_mol_vecs, dim=0)
pred_vecs = torch.cat([pred_hiddens, pred_mol_vecs], dim=1)
pred_vecs = nn.ReLU()(self.W(pred_vecs))
pred_scores = self.W_o(pred_vecs)
pred_targets = create_var(torch.LongTensor(pred_targets))
pred_loss = self.pred_loss(pred_scores, pred_targets) / len(mol_batch)
_,preds = torch.max(pred_scores, dim=1)
pred_acc = torch.eq(preds, pred_targets).float()
pred_acc = torch.sum(pred_acc) / pred_targets.nelement()
#Predict stop
stop_hiddens = torch.cat(stop_hiddens, dim=0)
stop_vecs = nn.ReLU()(self.U(stop_hiddens))
stop_scores = self.U_s(stop_vecs).squeeze()
stop_targets = create_var(torch.Tensor(stop_targets))
stop_loss = self.stop_loss(stop_scores, stop_targets) / len(mol_batch)
stops = torch.ge(stop_scores, 0).float()
stop_acc = torch.eq(stops, stop_targets).float()
stop_acc = torch.sum(stop_acc) / stop_targets.nelement()
return pred_loss, stop_loss, pred_acc.item(), stop_acc.item()
def decode(self, mol_vec, prob_decode):
stack,trace = [],[]
init_hidden = create_var(torch.zeros(1,self.hidden_size))
zero_pad = create_var(torch.zeros(1,1,self.hidden_size))
#Root Prediction
root_hidden = torch.cat([init_hidden, mol_vec], dim=1)
root_hidden = nn.ReLU()(self.W(root_hidden))
root_score = self.W_o(root_hidden)
_,root_wid = torch.max(root_score, dim=1)
root_wid = root_wid.item()
root = MolTreeNode(self.vocab.get_smiles(root_wid))
root.wid = root_wid
root.idx = 0
stack.append( (root, self.vocab.get_slots(root.wid)) )
all_nodes = [root]
h = {}
for step in xrange(MAX_DECODE_LEN):
node_x,fa_slot = stack[-1]
cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors ]
if len(cur_h_nei) > 0:
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
else:
cur_h_nei = zero_pad
cur_x = create_var(torch.LongTensor([node_x.wid]))
cur_x = self.embedding(cur_x)
#Predict stop
cur_h = cur_h_nei.sum(dim=1)
stop_hidden = torch.cat([cur_x,cur_h,mol_vec], dim=1)
stop_hidden = nn.ReLU()(self.U(stop_hidden))
stop_score = nn.Sigmoid()(self.U_s(stop_hidden) * 20).squeeze()
if prob_decode:
backtrack = (torch.bernoulli(1.0 - stop_score.data)[0] == 1)
else:
backtrack = (stop_score.item() < 0.5)
if not backtrack: #Forward: Predict next clique
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
pred_hidden = torch.cat([new_h,mol_vec], dim=1)
pred_hidden = nn.ReLU()(self.W(pred_hidden))
pred_score = nn.Softmax()(self.W_o(pred_hidden) * 20)
if prob_decode:
sort_wid = torch.multinomial(pred_score.data.squeeze(), 5)
else:
_,sort_wid = torch.sort(pred_score, dim=1, descending=True)
sort_wid = sort_wid.data.squeeze()
next_wid = None
for wid in sort_wid[:5]:
slots = self.vocab.get_slots(wid)
node_y = MolTreeNode(self.vocab.get_smiles(wid))
if have_slots(fa_slot, slots) and can_assemble(node_x, node_y):
next_wid = wid
next_slots = slots
break
if next_wid is None:
backtrack = True #No more children can be added
else:
node_y = MolTreeNode(self.vocab.get_smiles(next_wid))
node_y.wid = next_wid
node_y.idx = step + 1
node_y.neighbors.append(node_x)
h[(node_x.idx,node_y.idx)] = new_h[0]
stack.append( (node_y,next_slots) )
all_nodes.append(node_y)
if backtrack: #Backtrack, use if instead of else
if len(stack) == 1:
break #At root, terminate
node_fa,_ = stack[-2]
cur_h_nei = [ h[(node_y.idx,node_x.idx)] for node_y in node_x.neighbors if node_y.idx != node_fa.idx ]
if len(cur_h_nei) > 0:
cur_h_nei = torch.stack(cur_h_nei, dim=0).view(1,-1,self.hidden_size)
else:
cur_h_nei = zero_pad
new_h = GRU(cur_x, cur_h_nei, self.W_z, self.W_r, self.U_r, self.W_h)
h[(node_x.idx,node_fa.idx)] = new_h[0]
node_fa.neighbors.append(node_x)
stack.pop()
return root, all_nodes
"""
Helper Functions:
"""
def dfs(stack, x, fa):
for y in x.neighbors:
if y.idx == fa.idx:
continue
stack.append((x,y,1))
dfs(stack, y, x)
stack.append((y,x,0))
def have_slots(fa_slots, ch_slots):
if len(fa_slots) > 2 and len(ch_slots) > 2:
return True
matches = []
for i,s1 in enumerate(fa_slots):
a1,c1,h1 = s1
for j,s2 in enumerate(ch_slots):
a2,c2,h2 = s2
if a1 == a2 and c1 == c2 and (a1 != "C" or h1 + h2 >= 4):
matches.append( (i,j) )
if len(matches) == 0: return False
fa_match,ch_match = zip(*matches)
if len(set(fa_match)) == 1 and 1 < len(fa_slots) <= 2: #never remove atom from ring
fa_slots.pop(fa_match[0])
if len(set(ch_match)) == 1 and 1 < len(ch_slots) <= 2: #never remove atom from ring
ch_slots.pop(ch_match[0])
return True
def can_assemble(node_x, node_y):
neis = node_x.neighbors + [node_y]
for i,nei in enumerate(neis):
nei.nid = i
neighbors = [nei for nei in neis if nei.mol.GetNumAtoms() > 1]
neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
singletons = [nei for nei in neis if nei.mol.GetNumAtoms() == 1]
neighbors = singletons + neighbors
cands = enum_assemble(node_x, neighbors)
return len(cands) > 0