forked from wengong-jin/icml18-jtnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjtnn_vae.py
318 lines (260 loc) · 13 KB
/
jtnn_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn
from mol_tree import Vocab, MolTree
from nnutils import create_var
from jtnn_enc import JTNNEncoder
from jtnn_dec import JTNNDecoder
from mpn import MPN, mol2graph
from jtmpn import JTMPN
from chemutils import enum_assemble, set_atommap, copy_edit_mol, attach_mols, atom_equal, decode_stereo
import rdkit
import rdkit.Chem as Chem
from rdkit import DataStructs
from rdkit.Chem import AllChem
import copy, math
def set_batch_nodeID(mol_batch, vocab):
tot = 0
for mol_tree in mol_batch:
for node in mol_tree.nodes:
node.idx = tot
node.wid = vocab.get_index(node.smiles)
tot += 1
class JTNNVAE(nn.Module):
def __init__(self, vocab, hidden_size, latent_size, depth, stereo=True):
super(JTNNVAE, self).__init__()
self.vocab = vocab
self.hidden_size = hidden_size
self.latent_size = latent_size
self.depth = depth
self.embedding = nn.Embedding(vocab.size(), hidden_size)
self.jtnn = JTNNEncoder(vocab, hidden_size, self.embedding)
self.jtmpn = JTMPN(hidden_size, depth)
self.mpn = MPN(hidden_size, depth)
self.decoder = JTNNDecoder(vocab, hidden_size, latent_size / 2, self.embedding)
self.T_mean = nn.Linear(hidden_size, latent_size / 2)
self.T_var = nn.Linear(hidden_size, latent_size / 2)
self.G_mean = nn.Linear(hidden_size, latent_size / 2)
self.G_var = nn.Linear(hidden_size, latent_size / 2)
self.assm_loss = nn.CrossEntropyLoss(size_average=False)
self.use_stereo = stereo
if stereo:
self.stereo_loss = nn.CrossEntropyLoss(size_average=False)
def encode(self, mol_batch):
set_batch_nodeID(mol_batch, self.vocab)
root_batch = [mol_tree.nodes[0] for mol_tree in mol_batch]
tree_mess,tree_vec = self.jtnn(root_batch)
smiles_batch = [mol_tree.smiles for mol_tree in mol_batch]
mol_vec = self.mpn(mol2graph(smiles_batch))
return tree_mess, tree_vec, mol_vec
def encode_latent_mean(self, smiles_list):
mol_batch = [MolTree(s) for s in smiles_list]
for mol_tree in mol_batch:
mol_tree.recover()
_, tree_vec, mol_vec = self.encode(mol_batch)
tree_mean = self.T_mean(tree_vec)
mol_mean = self.G_mean(mol_vec)
return torch.cat([tree_mean,mol_mean], dim=1)
def forward(self, mol_batch, beta=0):
batch_size = len(mol_batch)
tree_mess, tree_vec, mol_vec = self.encode(mol_batch)
tree_mean = self.T_mean(tree_vec)
tree_log_var = -torch.abs(self.T_var(tree_vec)) #Following Mueller et al.
mol_mean = self.G_mean(mol_vec)
mol_log_var = -torch.abs(self.G_var(mol_vec)) #Following Mueller et al.
z_mean = torch.cat([tree_mean,mol_mean], dim=1)
z_log_var = torch.cat([tree_log_var,mol_log_var], dim=1)
kl_loss = -0.5 * torch.sum(1.0 + z_log_var - z_mean * z_mean - torch.exp(z_log_var)) / batch_size
epsilon = create_var(torch.randn(batch_size, self.latent_size / 2), False)
tree_vec = tree_mean + torch.exp(tree_log_var / 2) * epsilon
epsilon = create_var(torch.randn(batch_size, self.latent_size / 2), False)
mol_vec = mol_mean + torch.exp(mol_log_var / 2) * epsilon
word_loss, topo_loss, word_acc, topo_acc = self.decoder(mol_batch, tree_vec)
assm_loss, assm_acc = self.assm(mol_batch, mol_vec, tree_mess)
if self.use_stereo:
stereo_loss, stereo_acc = self.stereo(mol_batch, mol_vec)
else:
stereo_loss, stereo_acc = 0, 0
all_vec = torch.cat([tree_vec, mol_vec], dim=1)
loss = word_loss + topo_loss + assm_loss + 2 * stereo_loss + beta * kl_loss
return loss, kl_loss.item(), word_acc, topo_acc, assm_acc, stereo_acc
def assm(self, mol_batch, mol_vec, tree_mess):
cands = []
batch_idx = []
for i,mol_tree in enumerate(mol_batch):
for node in mol_tree.nodes:
#Leaf node's attachment is determined by neighboring node's attachment
if node.is_leaf or len(node.cands) == 1: continue
cands.extend( [(cand, mol_tree.nodes, node) for cand in node.cand_mols] )
batch_idx.extend([i] * len(node.cands))
cand_vec = self.jtmpn(cands, tree_mess)
cand_vec = self.G_mean(cand_vec)
batch_idx = create_var(torch.LongTensor(batch_idx))
mol_vec = mol_vec.index_select(0, batch_idx)
mol_vec = mol_vec.view(-1, 1, self.latent_size / 2)
cand_vec = cand_vec.view(-1, self.latent_size / 2, 1)
scores = torch.bmm(mol_vec, cand_vec).squeeze()
cnt,tot,acc = 0,0,0
all_loss = []
for i,mol_tree in enumerate(mol_batch):
comp_nodes = [node for node in mol_tree.nodes if len(node.cands) > 1 and not node.is_leaf]
cnt += len(comp_nodes)
for node in comp_nodes:
label = node.cands.index(node.label)
ncand = len(node.cands)
cur_score = scores.narrow(0, tot, ncand)
tot += ncand
if cur_score[label].item() >= cur_score.max().item():
acc += 1
label = create_var(torch.LongTensor([label]))
all_loss.append( self.assm_loss(cur_score.view(1,-1), label) )
#all_loss = torch.stack(all_loss).sum() / len(mol_batch)
all_loss = sum(all_loss) / len(mol_batch)
return all_loss, acc * 1.0 / cnt
def stereo(self, mol_batch, mol_vec):
stereo_cands,batch_idx = [],[]
labels = []
for i,mol_tree in enumerate(mol_batch):
cands = mol_tree.stereo_cands
if len(cands) == 1: continue
if mol_tree.smiles3D not in cands:
cands.append(mol_tree.smiles3D)
stereo_cands.extend(cands)
batch_idx.extend([i] * len(cands))
labels.append( (cands.index(mol_tree.smiles3D), len(cands)) )
if len(labels) == 0:
return create_var(torch.zeros(1)), 1.0
batch_idx = create_var(torch.LongTensor(batch_idx))
stereo_cands = self.mpn(mol2graph(stereo_cands))
stereo_cands = self.G_mean(stereo_cands)
stereo_labels = mol_vec.index_select(0, batch_idx)
scores = torch.nn.CosineSimilarity()(stereo_cands, stereo_labels)
st,acc = 0,0
all_loss = []
for label,le in labels:
cur_scores = scores.narrow(0, st, le)
if cur_scores.data[label] >= cur_scores.max().data[0]:
acc += 1
label = create_var(torch.LongTensor([label]))
all_loss.append( self.stereo_loss(cur_scores.view(1,-1), label) )
st += le
#all_loss = torch.cat(all_loss).sum() / len(labels)
all_loss = sum(all_loss) / len(labels)
return all_loss, acc * 1.0 / len(labels)
def reconstruct(self, smiles, prob_decode=False):
mol_tree = MolTree(smiles)
mol_tree.recover()
_,tree_vec,mol_vec = self.encode([mol_tree])
tree_mean = self.T_mean(tree_vec)
tree_log_var = -torch.abs(self.T_var(tree_vec)) #Following Mueller et al.
mol_mean = self.G_mean(mol_vec)
mol_log_var = -torch.abs(self.G_var(mol_vec)) #Following Mueller et al.
epsilon = create_var(torch.randn(1, self.latent_size / 2), False)
tree_vec = tree_mean + torch.exp(tree_log_var / 2) * epsilon
epsilon = create_var(torch.randn(1, self.latent_size / 2), False)
mol_vec = mol_mean + torch.exp(mol_log_var / 2) * epsilon
return self.decode(tree_vec, mol_vec, prob_decode)
def recon_eval(self, smiles):
mol_tree = MolTree(smiles)
mol_tree.recover()
_,tree_vec,mol_vec = self.encode([mol_tree])
tree_mean = self.T_mean(tree_vec)
tree_log_var = -torch.abs(self.T_var(tree_vec)) #Following Mueller et al.
mol_mean = self.G_mean(mol_vec)
mol_log_var = -torch.abs(self.G_var(mol_vec)) #Following Mueller et al.
all_smiles = []
for i in xrange(10):
epsilon = create_var(torch.randn(1, self.latent_size / 2), False)
tree_vec = tree_mean + torch.exp(tree_log_var / 2) * epsilon
epsilon = create_var(torch.randn(1, self.latent_size / 2), False)
mol_vec = mol_mean + torch.exp(mol_log_var / 2) * epsilon
for j in xrange(10):
new_smiles = self.decode(tree_vec, mol_vec, prob_decode=True)
all_smiles.append(new_smiles)
return all_smiles
def sample_prior(self, prob_decode=False):
tree_vec = create_var(torch.randn(1, self.latent_size / 2), False)
mol_vec = create_var(torch.randn(1, self.latent_size / 2), False)
return self.decode(tree_vec, mol_vec, prob_decode)
def sample_eval(self):
tree_vec = create_var(torch.randn(1, self.latent_size / 2), False)
mol_vec = create_var(torch.randn(1, self.latent_size / 2), False)
all_smiles = []
for i in xrange(100):
s = self.decode(tree_vec, mol_vec, prob_decode=True)
all_smiles.append(s)
return all_smiles
def decode(self, tree_vec, mol_vec, prob_decode):
pred_root,pred_nodes = self.decoder.decode(tree_vec, prob_decode)
#Mark nid & is_leaf & atommap
for i,node in enumerate(pred_nodes):
node.nid = i + 1
node.is_leaf = (len(node.neighbors) == 1)
if len(node.neighbors) > 1:
set_atommap(node.mol, node.nid)
tree_mess = self.jtnn([pred_root])[0]
cur_mol = copy_edit_mol(pred_root.mol)
global_amap = [{}] + [{} for node in pred_nodes]
global_amap[1] = {atom.GetIdx():atom.GetIdx() for atom in cur_mol.GetAtoms()}
cur_mol = self.dfs_assemble(tree_mess, mol_vec, pred_nodes, cur_mol, global_amap, [], pred_root, None, prob_decode)
if cur_mol is None:
return None
cur_mol = cur_mol.GetMol()
set_atommap(cur_mol)
cur_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cur_mol))
if cur_mol is None: return None
if self.use_stereo == False:
return Chem.MolToSmiles(cur_mol)
smiles2D = Chem.MolToSmiles(cur_mol)
stereo_cands = decode_stereo(smiles2D)
if len(stereo_cands) == 1:
return stereo_cands[0]
stereo_vecs = self.mpn(mol2graph(stereo_cands))
stereo_vecs = self.G_mean(stereo_vecs)
scores = nn.CosineSimilarity()(stereo_vecs, mol_vec)
_,max_id = scores.max(dim=0)
return stereo_cands[max_id.data[0]]
def dfs_assemble(self, tree_mess, mol_vec, all_nodes, cur_mol, global_amap, fa_amap, cur_node, fa_node, prob_decode):
fa_nid = fa_node.nid if fa_node is not None else -1
prev_nodes = [fa_node] if fa_node is not None else []
children = [nei for nei in cur_node.neighbors if nei.nid != fa_nid]
neighbors = [nei for nei in children if nei.mol.GetNumAtoms() > 1]
neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True)
singletons = [nei for nei in children if nei.mol.GetNumAtoms() == 1]
neighbors = singletons + neighbors
cur_amap = [(fa_nid,a2,a1) for nid,a1,a2 in fa_amap if nid == cur_node.nid]
cands = enum_assemble(cur_node, neighbors, prev_nodes, cur_amap)
if len(cands) == 0:
return None
cand_smiles,cand_mols,cand_amap = zip(*cands)
cands = [(candmol, all_nodes, cur_node) for candmol in cand_mols]
cand_vecs = self.jtmpn(cands, tree_mess)
cand_vecs = self.G_mean(cand_vecs)
mol_vec = mol_vec.squeeze()
scores = torch.mv(cand_vecs, mol_vec) * 20
if prob_decode:
probs = nn.Softmax()(scores.view(1,-1)).squeeze() + 1e-5 #prevent prob = 0
cand_idx = torch.multinomial(probs, probs.numel())
else:
_,cand_idx = torch.sort(scores, descending=True)
backup_mol = Chem.RWMol(cur_mol)
for i in xrange(cand_idx.numel()):
cur_mol = Chem.RWMol(backup_mol)
pred_amap = cand_amap[cand_idx[i].item()]
new_global_amap = copy.deepcopy(global_amap)
for nei_id,ctr_atom,nei_atom in pred_amap:
if nei_id == fa_nid:
continue
new_global_amap[nei_id][nei_atom] = new_global_amap[cur_node.nid][ctr_atom]
cur_mol = attach_mols(cur_mol, children, [], new_global_amap) #father is already attached
new_mol = cur_mol.GetMol()
new_mol = Chem.MolFromSmiles(Chem.MolToSmiles(new_mol))
if new_mol is None: continue
result = True
for nei_node in children:
if nei_node.is_leaf: continue
cur_mol = self.dfs_assemble(tree_mess, mol_vec, all_nodes, cur_mol, new_global_amap, pred_amap, nei_node, cur_node, prob_decode)
if cur_mol is None:
result = False
break
if result: return cur_mol
return None