-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathproblem25.c
122 lines (73 loc) · 1.62 KB
/
problem25.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
//By T.Poovarasan , ECE
#include<stdio.h>
/*Function to return max sum such that no two elements
are adjacent */
int FindMaxSum(int arr[], int n)
{
int incl = arr[0];
int excl = 0;
int excl_new;
int i;
for (i = 1; i < n; i++)
{
/* current max excluding i */
excl_new = (incl > excl)? incl: excl;
/* current max including i */
incl = excl + arr[i];
excl = excl_new;
}
/* return max of incl and excl */
return ((incl > excl)? incl : excl);
}
/* Driver program to test above function */
int main()
{
int arr[] = {5, 5, 10, 100, 10, 5};
printf("%d \n", FindMaxSum(arr, 6));
getchar();
return 0;
}
//Time Complexity: O(n)
//By Nandha Kumar, ECE
#include<stdio.h>
int FindMaxSum(int arr[], int n)
{
int incl = arr[0];
int excl = 0;
int exclnew;
int i;
for (i = 1; i < n; i++)
{
exclnew = (incl > excl)? incl: excl;
incl = excl + arr[i];
excl = exclnew;
}
return ((incl > excl)? incl : excl);
}
int main()
{
int arr[] = {5, 5, 10, 100, 10, 5};
printf("%d \n", FindMaxSum(arr, 6));
getchar();
return 0;
}
//how the program works
arr[] = {5, 5, 10, 40, 50, 35}
inc = 5
exc = 0
For i = 1 (current element is 5)
incl = (excl + arr[i]) = 5
excl = max(5, 0) = 5
For i = 2 (current element is 10)
incl = (excl + arr[i]) = 15
excl = max(5, 5) = 5
For i = 3 (current element is 40)
incl = (excl + arr[i]) = 45
excl = max(5, 15) = 15
For i = 4 (current element is 50)
incl = (excl + arr[i]) = 65
excl = max(45, 15) = 45
For i = 5 (current element is 35)
incl = (excl + arr[i]) = 80
excl = max(5, 15) = 65
And 35 is the last element. So, answer is max(incl, excl) = 80