-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathbwlabel.c
544 lines (515 loc) · 17.8 KB
/
bwlabel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#include <stdlib.h>
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#ifdef _MSC_VER
#else
#include <unistd.h>
#endif
#include <stdint.h>
#include "bwlabel.h"
#define printfx(...) fprintf(stderr, __VA_ARGS__)
//Jesper Andersson has acknowledged that this port of spm_bwlabel.c may be released using the BSD 2-Clause license
//Copyright 2021 Jesper Andersson
//Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
//1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//for usage, see https://en.wikibooks.org/wiki/SPM/How-to#How_to_remove_clusters_under_a_certain_size_in_a_binary_mask.3F
/****************************************************************
**
** Set of routines implementing a 2D or 3D connected component
** labelling algorithm. Its interface is modelled on bwlabel
** (which is a routine in the image processing toolbox) and
** takes as input a binary image and (optionally) a connectednes
** criterion (6, 18 or 26, in 2D 6 will correspond to 4 and 18
** and 26 to 8). It will output an image/volume where each
** connected component will have a unique label.
**
** The implementation is not recursive (i.e. will no crash for
** large connected components) and is loosely based on
** Thurfjell et al. 1992, A new three-dimensional connected
** components labeling algorithm with simultaneous object
** feature extraction capability. CVGIP: Graphical Models
** and Image Processing 54(4):357-364.
**
***************************************************************/
#ifndef MAX
#define MAX(A,B) ((A) > (B) ? (A) : (B))
#endif
#ifndef MIN
#define MIN(A,B) ((A) > (B) ? (B) : (A))
#endif
static void fill_tratab(uint32_t *tt, uint32_t *nabo, uint32_t nr_set) {
/*
*tt Translation table
*nabo Set of neighbours
nr_set Number of neighbours in nabo
*/
int i = 0, j = 0, cntr = 0;
uint32_t tn[9];
uint32_t ltn = UINT_MAX;
/*
Find smallest terminal number in neighbourhood
*/
for (i=0; i<nr_set; i++)
{
j = nabo[i];
cntr=0;
while (tt[j-1] != j)
{
j = tt[j-1];
cntr++;
if (cntr>100) {printfx("\nOoh no!!"); break;}
}
tn[i] = j;
ltn = MIN(ltn,j);
}
/*
Replace all terminal numbers in neighbourhood by the smallest one
*/
for (i=0; i<nr_set; i++)
{
tt[tn[i]-1] = ltn;
}
return;
}
#define idx(A,B,C,DIM) ((C)*DIM[0]*DIM[1] + (B)*DIM[0] + (A))
static uint32_t check_previous_slice(uint32_t *il, /* Initial labelling map */
uint32_t r, /* row */
uint32_t c, /* column */
uint32_t sl, /* slice */
size_t dim[3], /* dimensions of il */
uint32_t conn, /* Connectivity criterion */
uint32_t *nabo,
uint32_t *tt) /* Translation table */
{
if (!sl) return(0);
uint32_t l=0;
uint32_t nr_set = 0;
if (conn >= 6)
{
if ((l = il[idx(r,c,sl-1,dim)])) {nabo[nr_set++] = l;}
}
if (conn >= 18)
{
if (r) {if ((l = il[idx(r-1,c,sl-1,dim)])) {nabo[nr_set++] = l;}}
if (c) {if ((l = il[idx(r,c-1,sl-1,dim)])) {nabo[nr_set++] = l;}}
if (r < dim[0]-1) {if ((l = il[idx(r+1,c,sl-1,dim)])) {nabo[nr_set++] = l;}}
if (c < dim[1]-1) {if ((l = il[idx(r,c+1,sl-1,dim)])) {nabo[nr_set++] = l;}}
}
if (conn == 26)
{
if (r && c) {if ((l = il[idx(r-1,c-1,sl-1,dim)])) {nabo[nr_set++] = l;}}
if ((r < dim[0]-1) && c) {if ((l = il[idx(r+1,c-1,sl-1,dim)])) {nabo[nr_set++] = l;}}
if (r && (c < dim[1]-1)) {if ((l = il[idx(r-1,c+1,sl-1,dim)])) {nabo[nr_set++] = l;}}
if ((r < dim[0]-1) && (c < dim[1]-1)) {if ((l = il[idx(r+1,c+1,sl-1,dim)])) {nabo[nr_set++] = l;}}
}
if (nr_set)
{
fill_tratab(tt,/*ttn,*/nabo,nr_set);
return(nabo[0]);
}
else {return(0);}
}
static void * mxRealloc(void *oldArray, size_t oldBytes, size_t newBytes) {
// https://octave.org/doxygen/3.8/df/d4e/mex_8cc_source.html
//reallocate memory, preserve previous bytes
if (newBytes <= 0) {
free(oldArray);
return NULL;
}
void *newArray = (void *)malloc(newBytes);
memset(newArray, 0, newBytes);
if (oldBytes > 0) {
//void * memcpy ( void * destination, const void * source, size_t num );
oldBytes = MIN(oldBytes, newBytes);
//void * memcpy ( void * destination, const void * source, size_t num );
memcpy(newArray, oldArray, oldBytes);
free(oldArray);
}
return newArray;
}
/* do_initial_labelling */
static uint32_t do_initial_labelling(uint8_t *bw, /* Binary map */
size_t *dim, /* Dimensions of bw */
uint32_t conn, /* Connectivity criterion */
uint32_t *il, /* Initially labelled map */
uint32_t **tt) /* Translation table */
{
const size_t kGrowSize = 10000;
uint32_t i = 0, j = 0;
uint32_t nabo[8];
uint32_t label = 1;
uint32_t nr_set = 0;
uint32_t l = 0;
int32_t sl, r, c;
uint32_t ttn = kGrowSize;
uint32_t nabo9[9];
*tt = (uint32_t *)malloc(ttn * sizeof(uint32_t));
memset(*tt, 0, ttn * sizeof(uint32_t));
for (sl=0; sl<dim[2]; sl++)
{
for (c=0; c<dim[1]; c++)
{
for (r=0; r<dim[0]; r++)
{
nr_set = 0;
if (bw[idx(r,c,sl,dim)])
{
nabo[0] = check_previous_slice(il,r,c,sl,dim,conn,nabo9, *tt /*,ttn*/);
if (nabo[0]) {nr_set += 1;}
/*
For six(surface)-connectivity
*/
if (conn >= 6)
{
if (r)
{
if ((l = il[idx(r-1,c,sl,dim)])) {nabo[nr_set++] = l;}
}
if (c)
{
if ((l = il[idx(r,c-1,sl,dim)])) {nabo[nr_set++] = l;}
}
}
/*
For 18(edge)-connectivity
N.B. In current slice no difference to 26.
*/
if (conn >= 18)
{
if (c && r)
{
if ((l = il[idx(r-1,c-1,sl,dim)])) {nabo[nr_set++] = l;}
}
if (c && (r < dim[0]-1))
{
if ((l = il[idx(r+1,c-1,sl,dim)])) {nabo[nr_set++] = l;}
}
}
if (nr_set)
{
il[idx(r,c,sl,dim)] = nabo[0];
fill_tratab(*tt,/*ttn,*/nabo,nr_set);
}
else
{
il[idx(r,c,sl,dim)] = label;
if (label >= ttn) {
ttn += kGrowSize;
*tt = (uint32_t*)mxRealloc(*tt, (ttn - kGrowSize)*sizeof(uint32_t), ttn*sizeof(uint32_t));
}
(*tt)[label-1] = label;
label++;
}
}
}
}
}
/*
Finalise translation table
*/
for (i=0; i<(label-1); i++)
{
j = i;
while ((*tt)[j] != j+1)
{
j = (*tt)[j]-1;
}
(*tt)[i] = j+1;
}
return(label-1);
}
/* translate_labels */
static int translate_labels(uint32_t *il, /* Map of initial labels. */
size_t dim[3], /* Dimensions of il. */
uint32_t *tt, /* Translation table. */
uint32_t ttn, /* Size of translation table. */
uint32_t *l) /* Final map of labels. */
{
int n=0;
int i=0;
int ml=0;
int cl = 0;
n = dim[0]*dim[1]*dim[2];
for (i=0; i<ttn; i++) {ml = MAX(ml,tt[i]);}
uint32_t *fl = (uint32_t *)malloc(ml * sizeof(uint32_t));
memset(fl, 0, ml * sizeof(uint32_t));
for (i=0; i<n; i++)
{
if (il[i])
{
if (!fl[tt[il[i]-1]-1])
{
cl += 1;
fl[tt[il[i]-1]-1] = cl;
}
l[i] = fl[tt[il[i]-1]-1];
}
}
free(fl);
return(cl);
}
// #define MyOldUseFillH
#ifdef MyOldUseFillH
// The code below is the old method, that uses a classic flood fill to find bubbles
// the new method runs the labelling cluster twice: once for zero and once for non-zero voxels
// a bubble is a zero-intensity cluster that does not touch the edge of the volume
// new method x23 faster for Iguana image, bigger benefits with air dilation distance
static void fillh(uint32_t* imgBin, size_t dim[3], int is26, int nLabels) {
//aka nifti_fillh
//all given binary image, interior 0 voxels set to 1
int nx = dim[0];
int ny = dim[1];
int nz = dim[2];
if ((nx < 3) || (ny < 3) || (nz < 3) || (nLabels < 1))
return;
int nvox = dim[0] * dim[1] * dim[2];
//uint8_t *vxv = (uint8_t *)malloc(nvox * sizeof(uint8_t));
//memset(vxv, 0, nvox * sizeof(uint8_t));
//set up kernel to search for neighbors. Since we already included sides, we do not worry about A<->P and L<->R wrap
int numk = 6;
if (is26)
numk = 26;
int32_t *k = (int32_t *)malloc(numk * sizeof(int32_t)); //queue with untested seed
if (is26) {
int j = 0;
for (int z = -1; z <= 1; z++)
for (int y = -1; y <= 1; y++)
for (int x = -1; x <= 1; x++) {
if ((x == 0) && (y == 0) && (z == 0)) continue;
k[j] = x + (y * nx) + (z * nx * ny);
j++;
} //for x
} else { //if 26 neighbors else 6..
k[0] = nx * ny; //up
k[1] = -k[0]; //down
k[2] = nx; //anterior
k[3] = -k[2]; //posterior
k[4] = 1; //left
k[5] = -1;
}
//https://en.wikipedia.org/wiki/Flood_fill
int32_t *q = (int32_t *)malloc(nvox * sizeof(int32_t)); //queue with untested seed
uint8_t *vxs = (uint8_t *)malloc(nvox * sizeof(uint8_t));
for (int label = 1; label <= nLabels; label++) {
for (size_t i = 0; i < nvox; i++)
vxs[i] = (imgBin[i] == label);
int qlo = 0;
int qhi = -1; //ints always signed in C!
//load edges
size_t i = 0;
for (int z = 0; z < nz; z++) {
int zedge = 0;
if ((z == 0) || (z == (nz - 1)))
zedge = 1;
for (int y = 0; y < ny; y++) {
int yedge = 0;
if ((y == 0) || (y == (ny - 1)))
yedge = 1;
for (int x = 0; x < nx; x++) {
if ((vxs[i] == 0) && (zedge || yedge || (x == 0) || (x == (nx - 1)))) { //found new seed
vxs[i] = 1; //do not find again
qhi++;
q[qhi] = i;
} // new seed
i++;
} //for x
} //y
} //z
//printf("seeds %d kernel %d\n", qhi+1, numk);
//run a 'first in, first out' queue
while (qhi >= qlo) {
//retire one seed, add 0..6 new ones (fillh) or 0..26 new ones (fillh26)
for (int j = 0; j < numk; j++) {
int jj = q[qlo] + k[j];
if ((jj < 0) || (jj >= nvox))
continue;
if (vxs[jj] != 0)
continue;
//add new seed;
vxs[jj] = 1;
qhi++;
q[qhi] = jj;
}
qlo++;
} //while qhi >= qlo: continue until all seeds tested
for (size_t i = 0; i < nvox; i++) {
if (vxs[i] == 0)
imgBin[i] = label; //hidden internal voxel not found from the fill
}
}
free(vxs);
free(q);
free(k);
}
int bwlabel(float *img, int conn, size_t dim[3], bool onlyLargest, bool fillBubbles) {
if ((conn!=6) && (conn!=18) && (conn!=26)) {
printfx("bwlabel: conn must be 6, 18 or 26.\n");
return 0;
}
if ((dim[0] < 2) || (dim[1] < 2) || (dim[2] < 1)) {
printfx("bwlabel: img must be 2 or 3-dimensional\n");
return 0;
}
size_t nvox = dim[0] * dim[1] * dim[2];
uint32_t *l = (uint32_t *)malloc(nvox * sizeof(uint32_t)); //output image
memset(l, 0, nvox * sizeof(uint32_t));
uint32_t *il = (uint32_t *)malloc(nvox * sizeof(uint32_t));
memset(il, 0, nvox * sizeof(uint32_t));
uint8_t *bw = (uint8_t *)malloc(nvox * sizeof(uint8_t));
memset(bw, 0, nvox * sizeof(uint8_t));
for (size_t i = 0; i < nvox; i++)
if (img[i] != 0.0) bw[i] = 1;
uint32_t *tt = NULL;
uint32_t ttn = do_initial_labelling(bw,dim,conn,il,&tt);
free(bw);
int nl = translate_labels(il,dim,tt,ttn,l);
free(il);
free(tt);
if ((nl > 0) && (onlyLargest)){
uint32_t *nls = (uint32_t *)malloc((nl+1) * sizeof(uint32_t));
for (int j = 0; j <= nl; j++)
nls[j] = 0;
for (int i = 0; i < nvox; i++) {
nls[l[i]]++;
}
int mxL = 0;
int mxN = 0;
for (int j = 1; j <= nl; j++) {
if (nls[j] > mxN) {
mxN = nls[j];
mxL = j;
}
} //for j: each label
for (int i = 0; i < nvox; i++)
l[i] = (l[i] == mxL);
nl = 1;
free(nls);
} //if labels found
if (fillBubbles)
fillh(l, dim, 0, nl);
for (size_t i = 0; i < nvox; i++)
img[i] = l[i];
free(l);
return nl;
}
#else //above: old code using fillh, below new code
int bwlabelCore(float *img, int conn, size_t dim[3], bool onlyLargest) {
if ((conn!=6) && (conn!=18) && (conn!=26)) {
printfx("bwlabel: conn must be 6, 18 or 26.\n");
return 0;
}
if ((dim[0] < 2) || (dim[1] < 2) || (dim[2] < 1)) {
printfx("bwlabel: img must be 2 or 3-dimensional\n");
return 0;
}
size_t nvox = dim[0] * dim[1] * dim[2];
uint32_t *l = (uint32_t *)malloc(nvox * sizeof(uint32_t)); //output image
memset(l, 0, nvox * sizeof(uint32_t));
uint32_t *il = (uint32_t *)malloc(nvox * sizeof(uint32_t));
memset(il, 0, nvox * sizeof(uint32_t));
uint8_t *bw = (uint8_t *)malloc(nvox * sizeof(uint8_t));
memset(bw, 0, nvox * sizeof(uint8_t));
for (size_t i = 0; i < nvox; i++)
if (img[i] != 0.0) bw[i] = 1;
uint32_t *tt = NULL;
uint32_t ttn = do_initial_labelling(bw,dim,conn,il,&tt);
free(bw);
int nl = translate_labels(il,dim,tt,ttn,l);
free(il);
free(tt);
if ((nl > 0) && (onlyLargest)){
uint32_t *nls = (uint32_t *)malloc((nl+1) * sizeof(uint32_t));
for (int j = 0; j <= nl; j++)
nls[j] = 0;
for (int i = 0; i < nvox; i++) {
nls[l[i]]++;
}
int mxL = 0;
int mxN = 0;
for (int j = 1; j <= nl; j++) {
if (nls[j] > mxN) {
mxN = nls[j];
mxL = j;
}
} //for j: each label
for (int i = 0; i < nvox; i++)
l[i] = (l[i] == mxL);
nl = 1;
} //if labels found
for (size_t i = 0; i < nvox; i++)
img[i] = l[i];
free(l);
return nl;
}
int bwlabel(float *img, int conn, size_t dim[3], bool onlyLargest, bool fillBubbles) {
if (!fillBubbles) {
return bwlabelCore(img, conn, dim, onlyLargest);
}
size_t nvox = dim[0] * dim[1] * dim[2];
float *invertMaskF = (float *)malloc(nvox * sizeof(float));
memset(invertMaskF, 0, nvox * sizeof(float));
for (size_t i = 0; i < nvox; i++)
if (img[i] == 0.0) invertMaskF[i] = 1.0;
int nInvert = bwlabelCore(invertMaskF, 6, dim, false);
if (nInvert <= 1) { //no bubbles
free(invertMaskF);
return bwlabelCore(img, conn, dim, onlyLargest);
}
//bubbles exist - identify external labels that are on the boundary of the volume
uint32_t *invertMask = (uint32_t *)malloc(nvox * sizeof(uint32_t));
for (size_t i = 0; i < nvox; i++) {
invertMask[i] = round(invertMaskF[i]);
}
free(invertMaskF);
uint32_t *isEdgeLabel = (uint32_t *)malloc((nInvert + 1) * sizeof(uint32_t));
memset(isEdgeLabel, 0, (nInvert + 1) * sizeof(uint32_t));
size_t x = dim[0];
size_t y = dim[1];
size_t z = dim[2];
size_t xy = x * y;
//check if label touches top or bottom slice
size_t offset = (z - 1) * xy; //start of final slice
for (size_t i = 0; i < xy; i++) {
isEdgeLabel[invertMask[i]]++;
isEdgeLabel[invertMask[i+offset]]++;
}
//check if label touches anterior or posterior row
size_t yoffset = (y - 1) * x; //start of final row
for (size_t zi = 0; zi < z; zi++) {
size_t zoffset = zi * xy; //start of slice
for (size_t xi = 0; xi < x; xi++) {
isEdgeLabel[invertMask[xi+zoffset]]++;
isEdgeLabel[invertMask[xi+yoffset+zoffset]]++;
}
}
//check if label touches left or right column
size_t xoffset = (x - 1); //start of final column
for (size_t zi = 0; zi < z; zi++) {
size_t zoffset = zi * xy; //start of slice
size_t yoffset0 = 0;
for (size_t yi = 0; yi < y; yi++) {
isEdgeLabel[invertMask[yoffset0+zoffset]]++;
isEdgeLabel[invertMask[xoffset+yoffset0+zoffset]]++;
yoffset0 += x;
}
}
//make all bubbles non-zero
// a bubble is an inverted label that does not touch an edge
//int nVx = 0;
for (size_t i = 0; i < nvox; i++) {
if (!isEdgeLabel[invertMask[i]]) {
img[i] = 1.0;
//nVx ++;
}
}
//printf("Filled %d voxels\n", nVx);
free(invertMask);
free(isEdgeLabel);
return bwlabelCore(img, conn, dim, onlyLargest);
}
#endif