|
| 1 | +#pragma once |
| 2 | +#include <chrono> |
| 3 | +#include <functional> |
| 4 | +#include <memory> |
| 5 | +#include <vector> |
| 6 | +#include <map> |
| 7 | + |
| 8 | +#include <rcl/timer.h> |
| 9 | +#include <rclcpp/timer.hpp> |
| 10 | + |
| 11 | +#include <inttypes.h> |
| 12 | + |
| 13 | +namespace rclcpp::executors |
| 14 | +{ |
| 15 | + |
| 16 | +/** |
| 17 | + * @brief A class for managing a queue of timers |
| 18 | + * |
| 19 | + * This class holds a queue of timers of one type (RCL_ROS_TIME, RCL_SYSTEM_TIME or RCL_STEADY_TIME). |
| 20 | + * The queue itself manages an internal map of the timers, orders by the next time a timer will be |
| 21 | + * ready. Each time a timer is ready, a callback will be called from the internal thread. |
| 22 | + */ |
| 23 | +class TimerQueue |
| 24 | +{ |
| 25 | + struct TimerData |
| 26 | + { |
| 27 | + std::shared_ptr<const rcl_timer_t> rcl_ref; |
| 28 | + std::function<void()> timer_ready_callback; |
| 29 | + }; |
| 30 | + |
| 31 | +public: |
| 32 | + TimerQueue(rcl_clock_type_t timer_type) |
| 33 | + : timer_type(timer_type), |
| 34 | + used_clock_for_timers(timer_type), |
| 35 | + trigger_thread([this]() { |
| 36 | + timer_thread(); |
| 37 | + }) |
| 38 | + { |
| 39 | + }; |
| 40 | + |
| 41 | + ~TimerQueue() |
| 42 | + { |
| 43 | + stop(); |
| 44 | + |
| 45 | + trigger_thread.join(); |
| 46 | + } |
| 47 | + |
| 48 | + void stop() |
| 49 | + { |
| 50 | + running = false; |
| 51 | + used_clock_for_timers.cancel_sleep_or_wait(); |
| 52 | + } |
| 53 | + |
| 54 | + /** |
| 55 | + * @brief Removes a new timer from the queue. |
| 56 | + * This function is thread safe. |
| 57 | + * |
| 58 | + * Removes a timer, if it was added to this queue. |
| 59 | + * Ignores timers that are not part of this queue |
| 60 | + * |
| 61 | + * @param timer the timer to remove. |
| 62 | + */ |
| 63 | + |
| 64 | + void remove_timer(const rclcpp::TimerBase::SharedPtr & timer) |
| 65 | + { |
| 66 | + rcl_clock_t * clock_type_of_timer; |
| 67 | + |
| 68 | + std::shared_ptr<const rcl_timer_t> handle = timer->get_timer_handle(); |
| 69 | + |
| 70 | + if (rcl_timer_clock( |
| 71 | + const_cast<rcl_timer_t *>(handle.get()), |
| 72 | + &clock_type_of_timer) != RCL_RET_OK) |
| 73 | + { |
| 74 | + assert(false); |
| 75 | + } |
| 76 | + |
| 77 | + if (clock_type_of_timer->type != timer_type) { |
| 78 | + // timer is handled by another queue |
| 79 | + return; |
| 80 | + } |
| 81 | + |
| 82 | + timer->clear_on_reset_callback(); |
| 83 | + |
| 84 | + std::scoped_lock l(mutex); |
| 85 | + |
| 86 | + auto it = std::find_if( |
| 87 | + all_timers.begin(), all_timers.end(), |
| 88 | + [rcl_ref = timer->get_timer_handle()](const std::unique_ptr<TimerData> & d) |
| 89 | + { |
| 90 | + return d->rcl_ref == rcl_ref; |
| 91 | + }); |
| 92 | + |
| 93 | + if (it != all_timers.end()) { |
| 94 | + const TimerData * data_ptr = it->get(); |
| 95 | + |
| 96 | + |
| 97 | + auto it2 = std::find_if( |
| 98 | + running_timers.begin(), running_timers.end(), [data_ptr](const auto & e) { |
| 99 | + return e.second == data_ptr; |
| 100 | + }); |
| 101 | + |
| 102 | + running_timers.erase(it2); |
| 103 | + all_timers.erase(it); |
| 104 | + } |
| 105 | + |
| 106 | + used_clock_for_timers.cancel_sleep_or_wait(); |
| 107 | + } |
| 108 | + |
| 109 | + /** |
| 110 | + * @brief Adds a new timer to the queue. |
| 111 | + * This function is thread safe. |
| 112 | + * |
| 113 | + * This function will ignore any timer, that has not a matching type |
| 114 | + * |
| 115 | + * @param timer the timer to add. |
| 116 | + * @param timer_ready_callback callback that should be called when the timer is ready. |
| 117 | + */ |
| 118 | + void add_timer( |
| 119 | + const rclcpp::TimerBase::SharedPtr & timer, |
| 120 | + const std::function<void()> & timer_ready_callback) |
| 121 | + { |
| 122 | + rcl_clock_t * clock_type_of_timer; |
| 123 | + |
| 124 | + std::shared_ptr<const rcl_timer_t> handle = timer->get_timer_handle(); |
| 125 | + |
| 126 | + if (rcl_timer_clock( |
| 127 | + const_cast<rcl_timer_t *>(handle.get()), |
| 128 | + &clock_type_of_timer) != RCL_RET_OK) |
| 129 | + { |
| 130 | + assert(false); |
| 131 | + } |
| 132 | + |
| 133 | + if (clock_type_of_timer->type != timer_type) { |
| 134 | + // timer is handled by another queue |
| 135 | + return; |
| 136 | + } |
| 137 | + |
| 138 | + std::unique_ptr<TimerData> data = std::make_unique<TimerData>(); |
| 139 | + data->timer_ready_callback = std::move(timer_ready_callback); |
| 140 | + data->rcl_ref = std::move(handle); |
| 141 | + |
| 142 | + timer->set_on_reset_callback( |
| 143 | + [data_ptr = data.get(), this](size_t) { |
| 144 | + std::scoped_lock l(mutex); |
| 145 | + if (!remove_if_dropped(data_ptr)) |
| 146 | + { |
| 147 | + add_timer_to_running_map(data_ptr); |
| 148 | + } |
| 149 | + }); |
| 150 | + |
| 151 | + { |
| 152 | + std::scoped_lock l(mutex); |
| 153 | + add_timer_to_running_map(data.get()); |
| 154 | + |
| 155 | + all_timers.emplace_back(std::move(data) ); |
| 156 | + } |
| 157 | + |
| 158 | + //wake up thread as new timer was added |
| 159 | + used_clock_for_timers.cancel_sleep_or_wait(); |
| 160 | + } |
| 161 | + |
| 162 | +private: |
| 163 | + /** |
| 164 | + * Checks if the timer is still referenced if not deletes it from the queue |
| 165 | + * |
| 166 | + * @param timer_data The timer to check |
| 167 | + * @return true if removed / invalid |
| 168 | + */ |
| 169 | + bool remove_if_dropped(const TimerData * timer_data) |
| 170 | + { |
| 171 | + if (timer_data->rcl_ref.unique()) { |
| 172 | + // timer was deleted |
| 173 | + auto it = std::find_if( |
| 174 | + all_timers.begin(), all_timers.end(), [timer_data](const std::unique_ptr<TimerData> & e) { |
| 175 | + return timer_data == e.get(); |
| 176 | + } |
| 177 | + ); |
| 178 | + |
| 179 | + if (it != all_timers.end()) { |
| 180 | + all_timers.erase(it); |
| 181 | + } |
| 182 | + return true; |
| 183 | + } |
| 184 | + return false; |
| 185 | + } |
| 186 | + |
| 187 | + /** |
| 188 | + * @brief adds the given timer_data to the map of running timers, if valid. |
| 189 | + * |
| 190 | + * Advances the rcl timer. |
| 191 | + * Computes the next call time of the timer. |
| 192 | + * readds the timer to the map of running timers |
| 193 | + */ |
| 194 | + void add_timer_to_running_map(const TimerData * timer_data) |
| 195 | + { |
| 196 | + rcl_ret_t ret = rcl_timer_call(const_cast<rcl_timer_t *>(timer_data->rcl_ref.get())); |
| 197 | + if (ret == RCL_RET_TIMER_CANCELED) { |
| 198 | + return; |
| 199 | + } |
| 200 | + |
| 201 | + int64_t next_call_time; |
| 202 | + |
| 203 | + ret = rcl_timer_get_next_call_time(timer_data->rcl_ref.get(), &next_call_time); |
| 204 | + |
| 205 | + if (ret == RCL_RET_OK) { |
| 206 | + running_timers.emplace(next_call_time, timer_data); |
| 207 | + } |
| 208 | + |
| 209 | + // wake up the timer thread so that it can pick up the timer |
| 210 | + used_clock_for_timers.cancel_sleep_or_wait(); |
| 211 | + } |
| 212 | + |
| 213 | + /** |
| 214 | + * Returns the time when the next timer becomes ready |
| 215 | + */ |
| 216 | + std::chrono::nanoseconds get_next_timer_ready_time() const |
| 217 | + { |
| 218 | + if (running_timers.empty()) { |
| 219 | + // can't use std::chrono::nanoseconds::max, as wait_for |
| 220 | + // internally computes end time by using ::now() + timeout |
| 221 | + // as a workaround, we use some absurd high timeout |
| 222 | + return std::chrono::nanoseconds(used_clock_for_timers.now().nanoseconds()) + std::chrono::hours(10000); |
| 223 | + } |
| 224 | + return running_timers.begin()->first; |
| 225 | + } |
| 226 | + |
| 227 | + void call_ready_timer_callbacks() |
| 228 | + { |
| 229 | + auto readd_timer_to_running_map = [this](TimerMap::node_type && e) |
| 230 | + { |
| 231 | + const auto & timer_data = e.mapped(); |
| 232 | + if(remove_if_dropped(timer_data)) |
| 233 | + { |
| 234 | + return; |
| 235 | + } |
| 236 | + |
| 237 | + int64_t next_call_time; |
| 238 | + |
| 239 | + auto ret = rcl_timer_get_next_call_time(timer_data->rcl_ref.get(), &next_call_time); |
| 240 | + |
| 241 | + if (ret == RCL_RET_OK) { |
| 242 | + e.key() = std::chrono::nanoseconds(next_call_time); |
| 243 | + running_timers.insert(std::move(e)); |
| 244 | + } |
| 245 | + }; |
| 246 | + |
| 247 | + while (!running_timers.empty()) { |
| 248 | + |
| 249 | + if(remove_if_dropped(running_timers.begin()->second)) |
| 250 | + { |
| 251 | + continue; |
| 252 | + } |
| 253 | + |
| 254 | + int64_t time_until_call; |
| 255 | + |
| 256 | + const rcl_timer_t * rcl_timer_ref = running_timers.begin()->second->rcl_ref.get(); |
| 257 | + auto ret = rcl_timer_get_time_until_next_call(rcl_timer_ref, &time_until_call); |
| 258 | + if (ret == RCL_RET_TIMER_CANCELED) { |
| 259 | + running_timers.erase(running_timers.begin()); |
| 260 | + continue; |
| 261 | + } |
| 262 | + |
| 263 | + if (time_until_call <= 0) { |
| 264 | + // advance next call time; |
| 265 | + rcl_ret_t ret = rcl_timer_call(const_cast<rcl_timer_t *>(rcl_timer_ref)); |
| 266 | + if (ret == RCL_RET_TIMER_CANCELED) { |
| 267 | + running_timers.erase(running_timers.begin()); |
| 268 | + continue; |
| 269 | + } |
| 270 | + |
| 271 | + // timer is ready, execute callback |
| 272 | + running_timers.begin()->second->timer_ready_callback(); |
| 273 | + readd_timer_to_running_map(running_timers.extract(running_timers.begin())); |
| 274 | + continue; |
| 275 | + } |
| 276 | + break; |
| 277 | + } |
| 278 | + } |
| 279 | + |
| 280 | + void timer_thread() |
| 281 | + { |
| 282 | + while (running && rclcpp::ok()) { |
| 283 | + std::chrono::nanoseconds next_wakeup_time; |
| 284 | + { |
| 285 | + std::scoped_lock l(mutex); |
| 286 | + call_ready_timer_callbacks(); |
| 287 | + |
| 288 | + next_wakeup_time = get_next_timer_ready_time(); |
| 289 | + } |
| 290 | + try { |
| 291 | +// RCUTILS_LOG_ERROR_NAMED("rclcpp", "TimerQueue::timer_thread before sleep, next wakeup time %+" PRId64 , next_wakeup_time.count()); |
| 292 | + used_clock_for_timers.sleep_until(rclcpp::Time(next_wakeup_time.count(), timer_type)); |
| 293 | + } catch (const std::runtime_error &) { |
| 294 | + //there is a race on shutdown, were the context may become invalid, while we call sleep_until |
| 295 | + running = false; |
| 296 | + } |
| 297 | + } |
| 298 | + thread_terminated = true; |
| 299 | + } |
| 300 | + |
| 301 | + rcl_clock_type_t timer_type; |
| 302 | + |
| 303 | + Context::SharedPtr clock_sleep_context; |
| 304 | + |
| 305 | + rclcpp::Clock used_clock_for_timers; |
| 306 | + |
| 307 | + std::mutex mutex; |
| 308 | + |
| 309 | + std::atomic_bool running = true; |
| 310 | + std::atomic_bool thread_terminated = false; |
| 311 | + |
| 312 | + std::vector<std::unique_ptr<TimerData>> all_timers; |
| 313 | + |
| 314 | + using TimerMap = std::multimap<std::chrono::nanoseconds, const TimerData *>; |
| 315 | + TimerMap running_timers; |
| 316 | + |
| 317 | + std::thread trigger_thread; |
| 318 | + |
| 319 | + std::condition_variable thread_conditional; |
| 320 | +}; |
| 321 | + |
| 322 | +class TimerManager |
| 323 | +{ |
| 324 | + std::array<TimerQueue, 3> timer_queues; |
| 325 | + |
| 326 | +public: |
| 327 | + TimerManager() |
| 328 | + : timer_queues{RCL_ROS_TIME, RCL_SYSTEM_TIME, RCL_STEADY_TIME} |
| 329 | + { |
| 330 | + |
| 331 | + } |
| 332 | + |
| 333 | + void remove_timer(const rclcpp::TimerBase::SharedPtr & timer) |
| 334 | + { |
| 335 | + for (TimerQueue & q : timer_queues) { |
| 336 | + q.remove_timer(timer); |
| 337 | + } |
| 338 | + } |
| 339 | + |
| 340 | + void add_timer( |
| 341 | + const rclcpp::TimerBase::SharedPtr & timer, |
| 342 | + const std::function<void()> & timer_ready_callback) |
| 343 | + { |
| 344 | + for (TimerQueue & q : timer_queues) { |
| 345 | + q.add_timer(timer, timer_ready_callback); |
| 346 | + } |
| 347 | + } |
| 348 | + |
| 349 | + void stop() |
| 350 | + { |
| 351 | + for (TimerQueue & q : timer_queues) { |
| 352 | + q.stop(); |
| 353 | + } |
| 354 | + } |
| 355 | +}; |
| 356 | +} |
0 commit comments