diff --git a/docs/LICENSE.html b/docs/LICENSE.html new file mode 100644 index 0000000..2689fc0 --- /dev/null +++ b/docs/LICENSE.html @@ -0,0 +1,129 @@ + + + + + + + + +License • inferr + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ +
+
+ + +
YEAR: 2016-2017
+COPYRIGHT HOLDER: Aravind Hebbali
+
+ +
+ +
+ + + +
+ + + diff --git a/docs/articles/intro.html b/docs/articles/intro.html index 099626e..b44f0d3 100644 --- a/docs/articles/intro.html +++ b/docs/articles/intro.html @@ -80,7 +80,6 @@ @@ -404,40 +403,13 @@

Use Grouping Variable

Using the mtcars data, compare the standard deviation in miles per gallon for automatic and manual vehicles.

# Using Grouping Variable
-infer_ts_var_test(hsb, read, group_var = write, alternative = 'all')
+infer_ts_var_test(hsb, read, group_var = female, alternative = 'all')
##                Variance Ratio Test                 
 ## --------------------------------------------------
 ##   Group      Obs    Mean     Std. Err.    Std. Dev. 
 ## --------------------------------------------------
-##      4     44.5       2.47         4.93    
-##      4     41.75      3.42         6.85    
-##      2     34.5        0.5         0.71    
-##      2     36.5        5.5         7.78    
-##      3     39.33      3.93         6.81    
-##      1      44         NaN          NaN    
-##      5      45        2.81         6.28    
-##      3      49          1          1.73    
-##     10     47.5       1.88         5.95    
-##      2     48.5        1.5         2.12    
-##      1      63         NaN          NaN    
-##     12      44        2.26         7.82    
-##      1      55         NaN          NaN    
-##      9      45        3.13         9.39    
-##      2      44          3          4.24    
-##     11     48.27       2.9         9.62    
-##      2     50.5        6.5         9.19    
-##     15     52.53      2.25         8.71    
-##      1      39         NaN          NaN    
-##     17     51.18      2.28         9.38    
-##      3     51.33      3.48         6.03    
-##     12     49.33       2.5         8.67    
-##     25     57.16      1.63         8.15    
-##      4     65.25      3.42         6.85    
-##      4      57         5.6         11.2    
-##     18     57.28      1.85         7.84    
-##      4      64        4.53         9.06    
-##     16     61.88       1.7         6.79    
-##      7     63.43      3.47         9.18    
+##    0        91     52.82       1.1         10.51   
+##    1        109    51.73      0.96         10.06   
 ## --------------------------------------------------
 ##  combined    200    52.23      0.72         10.25   
 ## --------------------------------------------------
@@ -446,16 +418,16 @@ 

## -------------------------------------------------- ## F Num DF Den DF ## -------------------------------------------------- -## 0.5187 3 3 +## 1.0913 90 108 ## -------------------------------------------------- ## ## Null & Alternate Hypothesis ## ---------------------------------------- -## ratio = sd() / () +## ratio = sd(0) / (1) ## Ho: ratio = 1 ## ## Ha: ratio < 1 Ha: ratio > 1 -## Pr(F < f) = 0.3016 Pr(F > f) = 0.6984 +## Pr(F < f) = 0.6694 Pr(F > f) = 0.3306 ## ----------------------------------------

diff --git a/docs/authors.html b/docs/authors.html index 287ef1a..c993fe1 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -11,8 +11,8 @@ - + @@ -23,14 +23,17 @@ - + + - + + + diff --git a/docs/index.html b/docs/index.html index 999c578..1d602c6 100644 --- a/docs/index.html +++ b/docs/index.html @@ -6,10 +6,10 @@ Inferential Statistics • inferr - + - @@ -85,14 +85,14 @@

- inferr: Inferential statistics with R +inferr: Inferential statistics with R

Author: Aravind Hebbali
License: MIT

-

CRAN_Status_Badge Travis-CI Build Status AppVeyor Build Status

+

CRAN_Status_Badge Travis-CI Build Status AppVeyor Build Status

- Overview

+Overview

Inferential statistics allows us to make generalizations about populations using data drawn from the population. We use them when it is impractical or impossible to collect data about the whole population under study and instead, we have a sample that represents the population under study and using inferential statistics technique, we make generalizations about the population from the sample.

The inferr package:

- Installation

-
# install inferr from CRAN
-install.packages("inferr")
-
-# the development version from github
-# install.packages("devtools")
-devtools::install_github("rsquaredacademy/inferr")
+Installation +

- Shiny App

+Shiny App

Use infer_launch_shiny_app() to explore the package using a shiny app.

-

- Vignettes

+Vignettes

- Usage

+Usage
- One Sample t Test
-
infer_os_t_test(hsb$write, mu = 50, type = 'all')
-#>                               One-Sample Statistics                               
-#> ---------------------------------------------------------------------------------
-#>  Variable    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
-#> ---------------------------------------------------------------------------------
-#>   write      200    52.775     0.6702       9.4786       51.4537    54.0969   
-#> ---------------------------------------------------------------------------------
-#> 
-#>                                Ho: mean(write) ~=50                              
-#> 
-#>         Ha: mean < 50              Ha: mean ~= 50               Ha: mean > 50        
-#>          t = 4.141                   t = 4.141                   t = 4.141         
-#>        P < t = 1.0000             P > |t| = 0.0001             P > t = 0.0000
+One Sample t Test +
- ANOVA
-
infer_oneway_anova(hsb, 'write', 'prog')
-#>                                 ANOVA                                  
-#> ----------------------------------------------------------------------
-#>                    Sum of                                             
-#>                    Squares     DF     Mean Square      F        Sig.  
-#> ----------------------------------------------------------------------
-#> Between Groups    3175.698      2      1587.849      21.275    0.0000 
-#> Within Groups     14703.177    197      74.635                        
-#> Total             17878.875    199                                    
-#> ----------------------------------------------------------------------
-#> 
-#>                  Report                   
-#> -----------------------------------------
-#>  Category      N      Mean     Std. Dev. 
-#> -----------------------------------------
-#>     1         45     51.333        9.398 
-#>     2         105    56.257        7.943 
-#>     3         50     46.760        9.319 
-#> -----------------------------------------
-#> 
-#> Number of obs = 200       R-squared     = 0.1776 
-#> Root MSE      = 8.6392    Adj R-squared = 0.1693
+ANOVA +
- Chi Square Test of Independence
-
infer_chisq_assoc_test(as.factor(hsb$female), as.factor(hsb$schtyp))
-#>                Chi Square Statistics                 
-#> 
-#> Statistics                     DF    Value      Prob 
-#> ----------------------------------------------------
-#> Chi-Square                     1    0.0470    0.8284
-#> Likelihood Ratio Chi-Square    1    0.0471    0.8282
-#> Continuity Adj. Chi-Square     1    0.0005    0.9822
-#> Mantel-Haenszel Chi-Square     1    0.0468    0.8287
-#> Phi Coefficient                     0.0153          
-#> Contingency Coefficient             0.0153          
-#> Cramer's V                          0.0153          
-#> ----------------------------------------------------
+Chi Square Test of Independence +
- Levene’s Test
-
infer_levene_test(hsb$read, group_var = hsb$race)
-#>            Summary Statistics             
-#> Levels    Frequency    Mean     Std. Dev  
-#> -----------------------------------------
-#>   1          24        46.67      10.24   
-#>   2          11        51.91      7.66    
-#>   3          20        46.8       7.12    
-#>   4          145       53.92      10.28   
-#> -----------------------------------------
-#> Total        200       52.23      10.25   
-#> -----------------------------------------
-#> 
-#>                              Test Statistics                              
-#> -------------------------------------------------------------------------
-#> Statistic                            Num DF    Den DF         F    Pr > F 
-#> -------------------------------------------------------------------------
-#> Brown and Forsythe                        3       196      3.44    0.0179 
-#> Levene                                    3       196    3.4792     0.017 
-#> Brown and Forsythe (Trimmed Mean)         3       196    3.3936     0.019 
-#> -------------------------------------------------------------------------
+Levene’s Test +
- Cochran’s Q Test
-
infer_cochran_qtest(exam)
-#>    Test Statistics     
-#> ----------------------
-#> N                   15 
-#> Cochran's Q       4.75 
-#> df                   2 
-#> p value          0.093 
-#> ----------------------
+Cochran’s Q Test +
- McNemar Test
-
himath <- ifelse(hsb$math > 60, 1, 0)
-hiread <- ifelse(hsb$read > 60, 1, 0)
-infer_mcnemar_test(table(himath, hiread))
-#>            Controls 
-#> ---------------------------------
-#> Cases       0       1       Total 
-#> ---------------------------------
-#>   0        135      21        156 
-#>   1         18      26         44 
-#> ---------------------------------
-#> Total      153      47        200 
-#> ---------------------------------
-#> 
-#>        McNemar's Test        
-#> ----------------------------
-#> McNemar's chi2        0.2308 
-#> DF                         1 
-#> Pr > chi2              0.631 
-#> Exact Pr >= chi2      0.7493 
-#> ----------------------------
-#> 
-#>        Kappa Coefficient         
-#> --------------------------------
-#> Kappa                     0.4454 
-#> ASE                        0.075 
-#> 95% Lower Conf Limit      0.2984 
-#> 95% Upper Conf Limit      0.5923 
-#> --------------------------------
-#> 
-#> Proportion With Factor 
-#> ----------------------
-#> cases             0.78 
-#> controls         0.765 
-#> ratio           1.0196 
-#> odds ratio      1.1667 
-#> ----------------------
+McNemar Test +

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

@@ -288,11 +291,12 @@
@@ -315,7 +319,7 @@

Developers