-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdialogue_react_agent.py
468 lines (384 loc) · 20.5 KB
/
dialogue_react_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
from chat_llm import ReflectingAgent
from txtai import Embeddings
from llm_engines import LLMApi, LLM
import json, random, logging,re
from jinja2 import Template, Environment, FileSystemLoader
# loading the prompt from a file
def load_dialogue_react_fewshots(file_path:str):
## dialogue react prompts are contained in jsonl
with open(file_path, "r") as f:
prompts= [json.loads(line) for line in f]
return prompts
def load_dialogue_act_taxonomy(file_path:str):
## dialogue act taxonomy is contained in txt file
with open(file_path, "r") as f:
acts = f.readlines()
return [act.strip() for act in acts]
def load_base_prompt(file_path:str)->Template:
## the base prompt is saved inside a jinja template called dialogue_react_generation.j2 in the prompts folder
# load the file
with open(file_path, "r") as f:
template = f.read()
return Template(template)
def read_dialogue_act_list(file_path:str):
## the dialogue acts are saved in a json array inside dialogue_acts.json
with open(file_path, "r") as f:
dialogue_acts = json.load(f)
return dialogue_acts
dialogue_acts_taxonomy=load_dialogue_act_taxonomy("prompts/dialogue_taxonomy.txt")
dialogue_react_fewshots = load_dialogue_react_fewshots("fewshots_mpc/generated_dialogue_reacts.jsonl")
dialogue_react_fewshots_no_dialogue=load_dialogue_react_fewshots("fewshots_mpc/generated_dialogue_reacts_no_dialogue.jsonl")
# loading the prompts
prompt_template = load_base_prompt("prompts/dialogue_react_generation.j2")
prompt_template_no_dialogue_no_react = load_base_prompt("prompts/dialogue_react_generation_no_dialogue_no_react.j2")
prompt_template_no_dialogue = load_base_prompt("prompts/dialogue_react_generation_no_dialogue.j2")
memory_template = load_base_prompt("prompts/memory_generation.j2")
reflection_template = load_base_prompt("prompts/reflection_generation.j2")
dialogue_acts_list=read_dialogue_act_list("prompts/dialogue_acts.json")
# Create a custom logger
internal_agent_logger = logging.getLogger('agent_internal')
internal_agent_logger.setLevel(logging.INFO)
# Create handlers
internal_agent_file_handler = logging.FileHandler('agent_internal.log', mode='w')
internal_agent_file_handler.setLevel(logging.INFO)
# Create formatters and add it to handlers
formatter = logging.Formatter('%(asctime)-15s %(message)s')
internal_agent_file_handler.setFormatter(formatter)
# Add handlers to the internal_agent_logge
internal_agent_logger.addHandler(internal_agent_file_handler)
# prevent logging from propagating to the root logger
internal_agent_logger.propagate = False
class DialogueReactAgent(ReflectingAgent):
def __init__(self, name:str, persona:str, llm:LLM=LLMApi(),memory_freq:int=25, reflections_freq:int=50, n_fewshots:int=5, ablation:str=None):
"""
Initializes the DialogueReactAgent object.
Args:
name (str): The name of the agent.
llm (LLM): The LLM object.
persona (str): The persona of the agent.
memory_freq (int): The frequency of memory updates (memories are generated every memory_freq turns).
reflections_freq (int): The frequency of reflections (reflections are generated evert reflections_freq turns).
n_fewshots (int): The number of few-shot examples.
ablation (str): The ablation type. Should be one of None, "no_dialogue_no_react", "no_dialogue".
Returns:
None
"""
self.name = name
self.llm = llm
self.persona = persona
self.memory_freq = memory_freq
self.reflections_freq = reflections_freq
self.n_fewshots = n_fewshots
self.memory = Embeddings(content=True, gpu=False)
## add the dialogue act taxonomy to the agent
self.dialogue_acts_taxonomy = dialogue_acts_taxonomy
## dialogue act list
self.dialogue_acts = dialogue_acts_list
# possible ablations
ablation_types = ["no_dialogue_no_react", "no_dialogue"]
if ablation != None and ablation not in ablation_types:
assert ablation is None, f"Invalid ablation type: {ablation}."
else:
self.ablation = ablation
if self.ablation == None:
self.prompt = prompt_template
elif self.ablation == "no_dialogue_no_react":
self.prompt = prompt_template_no_dialogue_no_react
elif self.ablation == "no_dialogue":
self.prompt = prompt_template_no_dialogue
def gen_memories(self, last_messages, n_memories, **kwargs):
"""
Generates a memory based on the last messages.
Args:
last_messages (list): The last messages.
n_memories (int): The number of memories to generate.
Returns:
list of dicts: The generated memories.
"""
# unpack kwargs
agent_list = kwargs["agent_list"]
n_agents = kwargs["n_agents"]
turn_count = kwargs["turn_count"]
# turn agent_list into a list of names
agent_list = [agent.name for agent in agent_list]
## turn messages from tuples to dictionary
last_messages = [{"turn_count":x[0], "sender":x[1], "message":x[2]} for x in last_messages]
n_messages=len(last_messages)
## render the memory template
memory_prompt = memory_template.render(name=self.name,
persona=self.persona,
last_messages=last_messages,
n_messages=n_messages,
n_memories=n_memories,
n_agents=n_agents,
agent_list=agent_list)
# log compiled memory prompt
internal_agent_logger.info(f"Memory prompt: {memory_prompt}")
## generate until you get the desired number of memories
memories = []
while len(memories)<n_memories:
try:
raw_response = self.llm.generate_response(memory_prompt)
## memories should be startin with a number and a dot and be separated by new lines
memories_candidates = re.findall(r"\d+\..*", raw_response)
for memory in memories_candidates:
# replace every number and dot with an empty string
memory = re.sub(r"\d+\.", "", memory)
memories.append(memory)
#print(f"Valid memory: {memory}")
except Exception as e:
print(f"Error generating response: {e}")
# memories starting index
memories_start_index=self.memory.count()
# turn memories into dicts with turn_count and message
memories_list = [{"memory_n":memories_start_index+i+1,"turn":turn_count, "text":memory, "type":"memory"} for i, memory in enumerate(memories)]
return memories_list
def save_observations(self, observations_list):
"""
Saves observations in memory.
Args:
observations_list (list): The list of observations to save.
"""
self.memory.upsert(observations_list)
def gen_reflections(self, n_memories, n_reflections, **kwargs):
"""
Generates a reflection based on the last memories.
Args:
n_memories (int): The number of memories to consider.
n_reflections (int): The number of reflections to generate.
Returns:
list of dicts: The generated reflections.
"""
agent_list = kwargs["agent_list"]
n_agents = kwargs["n_agents"]
turn_count = kwargs["turn_count"]
# turn agent_list into a list of names
agent_list = [agent.name for agent in agent_list]
## get the last n_last_memories
last_memories = self.memory.search("select text, turn, memory_n from txtai order by memory_index desc", n_memories )
reflection_prompt = reflection_template.render(name=self.name,
persona=self.persona,
last_memories=last_memories,
n_memories=n_memories,
n_reflections=n_reflections,
n_agents=n_agents,
agent_list=agent_list)
# log compiled reflection prompt
internal_agent_logger.info(f"Reflection prompt: {reflection_prompt}")
## generate until you get the desired number of reflections
reflections = []
while len(reflections)<n_reflections:
try:
raw_response = self.llm.generate_response(reflection_prompt)
## reflections should be starting with a number and a dot and be separated by new lines
reflections_candidates = re.findall(r"\d+\..*", raw_response)
for reflection in reflections_candidates:
# replace every number and dot with an empty string
reflection = re.sub(r"\d+\.", "", reflection)
reflections.append(reflection)
#print(f"Valid reflection: {reflection}")
except Exception as e:
print(f"Error generating response: {e}")
# memories starting index
reflections_start_index=self.memory.count()
# turn memories into dicts with turn_count and message
reflections_list = [{"memory_n":reflections_start_index+i+1,"turn":turn_count, "text":reflection, "type":"reflection"} for i, reflection in enumerate(reflections)]
return reflections_list
def get_answer(self, last_messages, extra_context="", **kwargs):
# unpack kwargs
agent_list = kwargs["agent_list"]
n_agents = kwargs["n_agents"]
turn_count = kwargs["turn_count"]
# if memory is empty, set optional_memory to ""
if self.memory.isdense():
last_message = last_messages[-1]
optional_memory_list = self.memory.search(last_message[-1], limit=5)
## format the memory list
optional_memory = "\n".join(x["text"] for x in optional_memory_list)
else:
optional_memory = ""
dialogue_react_fewshots_sample=random.sample(dialogue_react_fewshots,1)[0]["generated_response"]
# format the messages into a list of strings in the format "Agent: message"
last_messages = [f"{x[1]}: {x[2]}" for x in last_messages]
if self.ablation == None:
# render template
prompt = self.prompt.render(
name=self.name,
persona=self.persona,
last_messages=last_messages,
optional_memory=optional_memory,
agent_list=agent_list,
observation_thought_action_examples_list=dialogue_react_fewshots_sample,
n_agents=n_agents,
dialogue_acts_taxonomy=dialogue_acts_taxonomy
)
elif self.ablation == "no_dialogue_no_react":
messages_pre_react=random.sample(dialogue_react_fewshots,1)[0]["messages"]
# messages is an array containing text and speaker, it should be put in the format "Speaker: text\nSpeaker: text\n...Speaker: text\n"
dialogue_react_fewshots_sample="\n".join([f"{x['speaker']}: {x['text']}" for x in messages_pre_react])
# render template
prompt = self.prompt.render(
name=self.name,
persona=self.persona,
last_messages=last_messages,
optional_memory=optional_memory,
agent_list=agent_list,
examples_list_no_dialogue_no_react=dialogue_react_fewshots_sample,
n_agents=n_agents,
)
elif self.ablation == "no_dialogue":
dialogue_react_fewshots_sample=random.sample(dialogue_react_fewshots_no_dialogue,1)[0]["generated_response"]
prompt = self.prompt.render(
name=self.name,
persona=self.persona,
last_messages=last_messages,
optional_memory=optional_memory,
agent_list=agent_list,
observation_thought_action_examples_list=dialogue_react_fewshots_sample,
n_agents=n_agents,
)
# log rendered prompt
internal_agent_logger.info(f"Answer generation prompt: {prompt}")
# get the answer for the dialogue react method
if self.ablation == None:
while True:
## the answer is generated by the llm and should be in the format
## Observation: <observation>
# Thought: <thought>
# Action: <action>
try:
answer_candidate = self.llm.generate_response(prompt)
## find the observation, thought and action
observation = re.findall(r"Observation: (.*?)\n", answer_candidate)
thought = re.findall(r"Thought: (.*?)\n", answer_candidate)
action = re.findall(r"Action: (.*?)\#\#", answer_candidate)
## check that we have exactly one observation, thought and action
if len(observation)==1 and len(thought)==1 and len(action)==1:
## check that thought is a dialogue act
observation = observation[0].strip()
thought = thought[0].strip()
# remove everything after the first > in the thought
thought = thought.split(">")[0]
# readd the > at the end
thought = thought + ">"
action = action[0].strip()
if thought not in self.dialogue_acts:
internal_agent_logger.info(f"Invalid dialogue act: {thought}.")
continue
answer = action
#print(f"Valid answer: {answer_candidate}.")
internal_agent_logger.info(f"Valid dialogue_act: {thought}.")
internal_agent_logger.info(f"Valid answer: {answer}.")
break
else:
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
except Exception as e:
internal_agent_logger.info(f"Error generating response: {e}.")
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
answer_with_dialogueAct = f"Following the observation: {observation}, I wanted to commit the following dialogue act: {thought}. Therefore, I wrote the message: {action}."
## save the answer in memory
self.memory.upsert([{"turn_count":turn_count, "text":answer_with_dialogueAct}])
# generate answer for the ablation no_dialogue
elif self.ablation == "no_dialogue":
while True:
## the answer is generated by the llm and should be in the format
## Observation: <observation>
# Thought: <thought>
# Action: <action>
try:
answer_candidate = self.llm.generate_response(prompt)
## find the observation, thought and action
observation = re.findall(r"Observation: (.*?)\n", answer_candidate)
thought = re.findall(r"Thought: (.*?)\n", answer_candidate)
action = re.findall(r"Action: (.*?)\#\#", answer_candidate)
## check that we have exactly one observation, thought and action
if len(observation)==1 and len(thought)==1 and len(action)==1:
# same as before, but without the dialogue act check
observation = observation[0].strip()
thought = thought[0].strip()
action = action[0].strip()
answer = action
internal_agent_logger.info(f"Valid answer: {answer}.")
break
else:
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
except Exception as e:
internal_agent_logger.info(f"Error generating response: {e}.")
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
# generate answer for the ablation no_dialogue_no_react
elif self.ablation == "no_dialogue_no_react":
# in this case, the message is a string that ends with ##
while True:
try:
answer_candidate = self.llm.generate_response(prompt)
answer_candidate = answer_candidate.strip()
if answer_candidate.endswith("##"):
answer = answer_candidate
# remove the ##
answer = answer[:-2]
internal_agent_logger.info(f"Valid answer: {answer}.")
break
else:
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
except Exception as e:
internal_agent_logger.info(f"Error generating response: {e}.")
internal_agent_logger.info(f"Invalid answer: {answer_candidate}.")
## save the answer in memory
self.memory.upsert([{"turn_count":turn_count, "text":answer}])
return answer
def run_routines(self, turn_count, chat_history, agent_list, n_agents):
"""
Runs routines for the agent. It will be called by the ChatThread object at the end of every turn.
Args:
turn_count (int): The current turn count.
chat_history (list): The chat history.
"""
if turn_count % self.memory_freq == 0:
print(f"Time to generate memories for {self.name}!")
self.save_observations(self.gen_memories(last_messages=chat_history[-self.memory_freq:], n_memories=5,agent_list=agent_list, n_agents=n_agents, turn_count=turn_count))
if turn_count % self.reflections_freq == 0:
print(f"Time to generate reflections for {self.name}!")
self.save_observations(self.gen_reflections(n_memories=100, n_reflections=5, agent_list=agent_list, n_agents=n_agents, turn_count=turn_count))
else:
pass
def dump_agent(self):
"""
Dumps the agent to a file.
"""
# dump the memory as a list of dictionaries
memory_dump = self.memory.search("SELECT id, text, turn, n_memory, entry, type FROM txtai ORDER BY entry DESC", limit=10000)
agent_data={
"name":self.name,
"persona":self.persona,
"memory_freq":self.memory_freq,
"reflections_freq":self.reflections_freq,
"n_fewshots":self.n_fewshots,
"memories":memory_dump,
"llm": self.llm.__class__.__name__,
"type": self.__class__.__name__
}
return agent_data
def main():
# Create an instance of the DialogueReactAgent
agent = DialogueReactAgent("Agent", "A good person",LLMApi(), 0.5, 0.2, 5)
# Perform some tests
print(agent.llm)
print(agent.persona)
print(agent.memory_freq)
print(agent.reflections_freq)
print(agent.n_fewshots)
print(agent.memory)
print(agent.dialogue_acts[0])
# agent.get_answer(["Hello", "How are you?"],
# agent_list=["Agent1", "Agent2"],
# n_agents=2,
# turn_count=3)
# test the ablation no_dialogue
agent=DialogueReactAgent("Agent", "A good person that likes golf",LLMApi(), 0.5, 0.2, 5, "no_dialogue")
answer = agent.get_answer([("Agent1", "Hello", "How are you?")],
agent_list=["Agent1", "Agent2"],
n_agents=2,
turn_count=3)
print(answer)
if __name__ == "__main__":
main()