-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInvisible.py
68 lines (51 loc) · 2.16 KB
/
Invisible.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#Import Libraries
import cv2
import numpy as np
import time
print("!! Invisibility is no more a Dream !!")
# Used to capture from the webcam
cap = cv2.VideoCapture(0)
# Time to adjust camera according to the background
time.sleep(3)
count = 0
# The background image to be displayed when cloak is on
background = 0
# Capture the background in range of 60
for i in range(60):
ret, background = cap.read()
background = np.flip(background, axis=1)
# Read every frame from the webcam, until the camera is open
while (cap.isOpened()):
ret, img = cap.read()
if not ret:
break
count += 1
img = np.flip(img, axis=1)
# Convert the color space from BGR to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Generate masks to detect red color
lower_red = np.array([0, 120, 50])
upper_red = np.array([10, 255,255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([170, 120, 70])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
# If there is any shade of red, it will be saved to mask 1
mask1 = mask1 + mask2 # + works as OR here
# Open and Improve the mask image
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8), iterations=2) # Noise Removal
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8), iterations=1) # Increase smoothness of image
# Create an inverted mask to segment out the red color from the frame
mask2 = cv2.bitwise_not(mask1) # Everything except the cloak
# Create image showing static background frame pixels only for the masked region
res1 = cv2.bitwise_and(background, background, mask=mask1)
# Segment the red color part out of the frame using bitwise AND with the inverted mask
res2 = cv2.bitwise_and(img, img, mask=mask2)
# Generating the final output
finalOutput = cv2.addWeighted(res1, 1, res2, 1, 0) # Linearly adding 2 images
cv2.imshow("Eureka", finalOutput)
k = cv2.waitKey(10)
if k == 27: # To end the execution,press esc
break
cap.release()
cv2.destroyAllWindows()