31
31
crate :: Miniscript ,
32
32
crate :: Tap ,
33
33
std:: cmp:: Reverse ,
34
+ std:: collections:: BTreeMap ,
34
35
std:: collections:: { BinaryHeap , HashMap } ,
35
36
std:: sync:: Arc ,
36
37
} ;
@@ -41,6 +42,14 @@ use crate::miniscript::limits::{LOCKTIME_THRESHOLD, SEQUENCE_LOCKTIME_TYPE_FLAG}
41
42
use crate :: miniscript:: types:: extra_props:: TimelockInfo ;
42
43
use crate :: { errstr, Error , ForEach , ForEachKey , MiniscriptKey } ;
43
44
45
+ /// [`TapTree`] -> ([`Policy`], satisfaction cost) cache
46
+ #[ cfg( feature = "compiler" ) ]
47
+ type PolicyTapCache < Pk > = BTreeMap < TapTree < Pk > , ( Policy < Pk > , f64 ) > ;
48
+
49
+ /// [`Miniscript`] -> leaf probability in policy cache
50
+ #[ cfg( feature = "compiler" ) ]
51
+ type MsTapCache < Pk > = BTreeMap < TapTree < Pk > , f64 > ;
52
+
44
53
/// Concrete policy which corresponds directly to a Miniscript structure,
45
54
/// and whose disjunctions are annotated with satisfaction probabilities
46
55
/// to assist the compiler
@@ -263,6 +272,62 @@ impl<Pk: MiniscriptKey> Policy<Pk> {
263
272
}
264
273
}
265
274
275
+ /// Compile [`Policy`] into a [`TapTree Descriptor`][`Descriptor::Tr`]
276
+ ///
277
+ ///
278
+ /// This follows the heuristic as described in [`with_huffman_tree_eff`]
279
+ #[ cfg( feature = "compiler" ) ]
280
+ pub fn compile_tr ( & self , unspendable_key : Option < Pk > ) -> Result < Descriptor < Pk > , Error > {
281
+ self . is_valid ( ) ?; // Check for validity
282
+ match self . is_safe_nonmalleable ( ) {
283
+ ( false , _) => Err ( Error :: from ( CompilerError :: TopLevelNonSafe ) ) ,
284
+ ( _, false ) => Err ( Error :: from (
285
+ CompilerError :: ImpossibleNonMalleableCompilation ,
286
+ ) ) ,
287
+ _ => {
288
+ let ( internal_key, policy) = self . clone ( ) . extract_key ( unspendable_key) ?;
289
+ let tree = Descriptor :: new_tr (
290
+ internal_key,
291
+ match policy {
292
+ Policy :: Trivial => None ,
293
+ policy => {
294
+ let mut policy_cache = PolicyTapCache :: < Pk > :: new ( ) ;
295
+ let mut ms_cache = MsTapCache :: < Pk > :: new ( ) ;
296
+ // Obtain the policy compilations and populate the respective caches for
297
+ // creating the huffman tree later on
298
+ let leaf_compilations: Vec < _ > = policy
299
+ . to_tapleaf_prob_vec ( 1.0 )
300
+ . into_iter ( )
301
+ . filter ( |x| x. 1 != Policy :: Unsatisfiable )
302
+ . map ( |( prob, ref pol) | {
303
+ let compilation =
304
+ compiler:: best_compilation_sat :: < Pk , Tap > ( pol) . unwrap ( ) ;
305
+ policy_cache. insert (
306
+ TapTree :: Leaf ( Arc :: clone ( & compilation. 0 ) ) ,
307
+ ( pol. clone ( ) , compilation. 1 ) , // (policy, sat_cost)
308
+ ) ;
309
+ ms_cache. insert (
310
+ TapTree :: Leaf ( Arc :: from ( compilation. 0 . clone ( ) ) ) ,
311
+ prob,
312
+ ) ;
313
+ compilation. 0
314
+ } )
315
+ . collect ( ) ;
316
+ let taptree = with_huffman_tree_eff (
317
+ leaf_compilations,
318
+ & mut policy_cache,
319
+ & mut ms_cache,
320
+ )
321
+ . unwrap ( ) ;
322
+ Some ( taptree)
323
+ }
324
+ } ,
325
+ ) ?;
326
+ Ok ( tree)
327
+ }
328
+ }
329
+ }
330
+
266
331
/// Compile the descriptor into an optimized `Miniscript` representation
267
332
#[ cfg( feature = "compiler" ) ]
268
333
pub fn compile < Ctx : ScriptContext > ( & self ) -> Result < Miniscript < Pk , Ctx > , CompilerError > {
@@ -805,6 +870,36 @@ where
805
870
}
806
871
}
807
872
873
+ /// Average satisfaction cost for [`TapTree`] with the leaf [`Miniscript`] nodes having
874
+ /// probabilities corresponding to the (sub)policies they're compiled from.
875
+ ///
876
+ /// Average satisfaction cost for [`TapTree`] over script-spend paths is probability times
877
+ /// the size of control block + the script size.
878
+ #[ cfg( feature = "compiler" ) ]
879
+ fn taptree_cost < Pk : MiniscriptKey > (
880
+ tr : & TapTree < Pk > ,
881
+ ms_cache : & MsTapCache < Pk > ,
882
+ policy_cache : & PolicyTapCache < Pk > ,
883
+ depth : u32 ,
884
+ ) -> f64 {
885
+ match * tr {
886
+ TapTree :: Tree ( ref l, ref r) => {
887
+ taptree_cost ( l, ms_cache, policy_cache, depth + 1 )
888
+ + taptree_cost ( r, ms_cache, policy_cache, depth + 1 )
889
+ }
890
+ TapTree :: Leaf ( ref ms) => {
891
+ let prob = ms_cache
892
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
893
+ . expect ( "Probability should exist for the given ms" ) ;
894
+ let sat_cost = policy_cache
895
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
896
+ . expect ( "Cost should exist for the given ms" )
897
+ . 1 ;
898
+ prob * ( ms. script_size ( ) as f64 + sat_cost + 32.0 * depth as f64 )
899
+ }
900
+ }
901
+ }
902
+
808
903
/// Create a Huffman Tree from compiled [Miniscript] nodes
809
904
#[ cfg( feature = "compiler" ) ]
810
905
fn with_huffman_tree < Pk : MiniscriptKey > (
@@ -835,3 +930,117 @@ fn with_huffman_tree<Pk: MiniscriptKey>(
835
930
. 1 ;
836
931
Ok ( node)
837
932
}
933
+
934
+ /// Create a [`TapTree`] from the a list of [`Miniscript`]s having corresponding satisfaction
935
+ /// cost and probability.
936
+ ///
937
+ /// Given that satisfaction probability and cost for each script is known, constructing the
938
+ /// [`TapTree`] as a huffman tree over the net cost (as defined in [`taptree_cost`]) is
939
+ /// the optimal one.
940
+ /// For finding the optimal policy to taptree compilation, we are required to search
941
+ /// exhaustively over all policies which have the same leaf policies. Owing to the exponential
942
+ /// blow-up for such a method, we use a heuristic where we augment the merge to check if the
943
+ /// compilation of a new (sub)policy into a [`TapTree::Leaf`] with the policy corresponding to
944
+ /// the nodes as children is better than [`TapTree::Tree`] with the nodes as children.
945
+ #[ cfg( feature = "compiler" ) ]
946
+ fn with_huffman_tree_eff < Pk : MiniscriptKey > (
947
+ ms : Vec < Arc < Miniscript < Pk , Tap > > > ,
948
+ policy_cache : & mut PolicyTapCache < Pk > ,
949
+ ms_cache : & mut MsTapCache < Pk > ,
950
+ ) -> Result < TapTree < Pk > , Error > {
951
+ let mut node_weights = BinaryHeap :: < ( Reverse < OrdF64 > , OrdF64 , TapTree < Pk > ) > :: new ( ) ; // (cost, branch_prob, tree)
952
+ // Populate the heap with each `ms` as a TapLeaf, and the respective cost fields
953
+ for script in ms {
954
+ let wt = OrdF64 ( taptree_cost (
955
+ & TapTree :: Leaf ( Arc :: clone ( & script) ) ,
956
+ ms_cache,
957
+ policy_cache,
958
+ 0 ,
959
+ ) ) ;
960
+ let prob = OrdF64 (
961
+ * ms_cache
962
+ . get ( & TapTree :: Leaf ( Arc :: clone ( & script) ) )
963
+ . expect ( "Probability should exist for the given ms" ) ,
964
+ ) ;
965
+ node_weights. push ( ( Reverse ( wt) , prob, TapTree :: Leaf ( Arc :: clone ( & script) ) ) ) ;
966
+ }
967
+ if node_weights. is_empty ( ) {
968
+ return Err ( errstr ( "Empty Miniscript compilation" ) ) ;
969
+ }
970
+ while node_weights. len ( ) > 1 {
971
+ // Obtain the two least-weighted nodes from the heap for merging
972
+ let ( _prev_cost1, p1, ms1) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
973
+ let ( _prev_cost2, p2, ms2) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
974
+
975
+ // Retrieve the respective policies
976
+ let ( left_pol, _c1) = policy_cache
977
+ . get ( & ms1)
978
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
979
+ . clone ( ) ;
980
+
981
+ let ( right_pol, _c2) = policy_cache
982
+ . get ( & ms2)
983
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
984
+ . clone ( ) ;
985
+
986
+ // Create a parent policy with the respective node TapTrees as children (with odds
987
+ // weighted approximately in ratio to their probabilities)
988
+ let parent_policy = Policy :: Or ( vec ! [
989
+ ( ( p1. 0 * 1e4 ) . round( ) as usize , left_pol) ,
990
+ ( ( p2. 0 * 1e4 ) . round( ) as usize , right_pol) ,
991
+ ] ) ;
992
+
993
+ // Obtain compilation for the parent policy
994
+ let ( parent_compilation, parent_sat_cost) =
995
+ compiler:: best_compilation_sat :: < Pk , Tap > ( & parent_policy) ?;
996
+
997
+ // Probability of the parent node being satisfied equals the probability of either
998
+ // nodes to be satisfied. Since we weight the odds appropriately, the children nodes
999
+ // still have approximately the same probabilities
1000
+ let p = p1. 0 + p2. 0 ;
1001
+ // Inserting parent policy's weights (sat_cost and probability) for later usage
1002
+ ms_cache. insert ( TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) , p) ;
1003
+ policy_cache. insert (
1004
+ TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1005
+ ( parent_policy. clone ( ) , parent_sat_cost) ,
1006
+ ) ;
1007
+
1008
+ let parent_cost = OrdF64 ( taptree_cost (
1009
+ & TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1010
+ ms_cache,
1011
+ policy_cache,
1012
+ 0 ,
1013
+ ) ) ;
1014
+ let children_cost = OrdF64 (
1015
+ taptree_cost ( & ms1, ms_cache, policy_cache, 0 )
1016
+ + taptree_cost ( & ms2, ms_cache, policy_cache, 0 ) ,
1017
+ ) ;
1018
+
1019
+ // Merge the children nodes into either TapLeaf of the parent compilation or
1020
+ // TapTree children nodes accordingly
1021
+ node_weights. push ( if parent_cost > children_cost {
1022
+ ms_cache. insert (
1023
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1024
+ p,
1025
+ ) ;
1026
+ policy_cache. insert (
1027
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1028
+ ( parent_policy, parent_sat_cost) ,
1029
+ ) ;
1030
+ (
1031
+ Reverse ( children_cost) ,
1032
+ OrdF64 ( p) ,
1033
+ TapTree :: Tree ( Arc :: from ( ms1) , Arc :: from ( ms2) ) ,
1034
+ )
1035
+ } else {
1036
+ let node = TapTree :: Leaf ( Arc :: from ( parent_compilation) ) ;
1037
+ ( Reverse ( parent_cost) , OrdF64 ( p) , node)
1038
+ } ) ;
1039
+ }
1040
+ debug_assert ! ( node_weights. len( ) == 1 ) ;
1041
+ let node = node_weights
1042
+ . pop ( )
1043
+ . expect ( "huffman tree algorithm is broken" )
1044
+ . 2 ;
1045
+ Ok ( node)
1046
+ }
0 commit comments