@@ -37,10 +37,19 @@ use {
37
37
crate :: Miniscript ,
38
38
crate :: Tap ,
39
39
std:: cmp:: Reverse ,
40
+ std:: collections:: BTreeMap ,
40
41
std:: collections:: { BinaryHeap , HashMap } ,
41
42
std:: sync:: Arc ,
42
43
} ;
43
44
45
+ /// [`TapTree`] -> ([`Policy`], satisfaction cost) cache
46
+ #[ cfg( feature = "compiler" ) ]
47
+ type PolicyTapCache < Pk > = BTreeMap < TapTree < Pk > , ( Policy < Pk > , f64 ) > ;
48
+
49
+ /// [`Miniscript`] -> leaf probability in policy cache
50
+ #[ cfg( feature = "compiler" ) ]
51
+ type MsTapCache < Pk > = BTreeMap < TapTree < Pk > , f64 > ;
52
+
44
53
/// Concrete policy which corresponds directly to a Miniscript structure,
45
54
/// and whose disjunctions are annotated with satisfaction probabilities
46
55
/// to assist the compiler
@@ -135,7 +144,10 @@ impl fmt::Display for PolicyError {
135
144
}
136
145
137
146
impl < Pk : MiniscriptKey > Policy < Pk > {
138
- /// Flatten the [`Policy`] tree structure into a Vector with corresponding leaf probability
147
+ /// Flatten the [`Policy`] tree structure into a Vector of (sub)-policies with corresponding
148
+ /// leaf probabilities by using odds for calculating branch probabilities.
149
+ /// We consider splitting the [`Policy`] tree into respective (sub)-policies considering
150
+ /// disjunction over [`Policy::Or`] and [`Policy::Threshold`](1, ...)
139
151
#[ cfg( feature = "compiler" ) ]
140
152
fn to_tapleaf_prob_vec ( & self , prob : f64 ) -> Vec < ( f64 , Policy < Pk > ) > {
141
153
match * self {
@@ -248,6 +260,62 @@ impl<Pk: MiniscriptKey> Policy<Pk> {
248
260
}
249
261
}
250
262
263
+ /// Compile [`Policy`] into a [`TapTree Descriptor`][`Descriptor::Tr`]
264
+ ///
265
+ ///
266
+ /// This follows the heuristic as described in [`with_huffman_tree_eff`]
267
+ #[ cfg( feature = "compiler" ) ]
268
+ pub fn compile_tr ( & self , unspendable_key : Option < Pk > ) -> Result < Descriptor < Pk > , Error > {
269
+ self . is_valid ( ) ?; // Check for validity
270
+ match self . is_safe_nonmalleable ( ) {
271
+ ( false , _) => Err ( Error :: from ( CompilerError :: TopLevelNonSafe ) ) ,
272
+ ( _, false ) => Err ( Error :: from (
273
+ CompilerError :: ImpossibleNonMalleableCompilation ,
274
+ ) ) ,
275
+ _ => {
276
+ let ( internal_key, policy) = self . clone ( ) . extract_key ( unspendable_key) ?;
277
+ let tree = Descriptor :: new_tr (
278
+ internal_key,
279
+ match policy {
280
+ Policy :: Trivial => None ,
281
+ policy => {
282
+ let mut policy_cache = PolicyTapCache :: < Pk > :: new ( ) ;
283
+ let mut ms_cache = MsTapCache :: < Pk > :: new ( ) ;
284
+ // Obtain the policy compilations and populate the respective caches for
285
+ // creating the huffman tree later on
286
+ let leaf_compilations: Vec < _ > = policy
287
+ . to_tapleaf_prob_vec ( 1.0 )
288
+ . into_iter ( )
289
+ . filter ( |x| x. 1 != Policy :: Unsatisfiable )
290
+ . map ( |( prob, ref pol) | {
291
+ let compilation =
292
+ compiler:: best_compilation_sat :: < Pk , Tap > ( pol) . unwrap ( ) ;
293
+ policy_cache. insert (
294
+ TapTree :: Leaf ( Arc :: clone ( & compilation. 0 ) ) ,
295
+ ( pol. clone ( ) , compilation. 1 ) , // (policy, sat_cost)
296
+ ) ;
297
+ ms_cache. insert (
298
+ TapTree :: Leaf ( Arc :: from ( compilation. 0 . clone ( ) ) ) ,
299
+ prob,
300
+ ) ;
301
+ compilation. 0
302
+ } )
303
+ . collect ( ) ;
304
+ let taptree = with_huffman_tree_eff (
305
+ leaf_compilations,
306
+ & mut policy_cache,
307
+ & mut ms_cache,
308
+ )
309
+ . unwrap ( ) ;
310
+ Some ( taptree)
311
+ }
312
+ } ,
313
+ ) ?;
314
+ Ok ( tree)
315
+ }
316
+ }
317
+ }
318
+
251
319
/// Compile the descriptor into an optimized `Miniscript` representation
252
320
#[ cfg( feature = "compiler" ) ]
253
321
pub fn compile < Ctx : ScriptContext > ( & self ) -> Result < Miniscript < Pk , Ctx > , CompilerError > {
@@ -799,6 +867,36 @@ where
799
867
}
800
868
}
801
869
870
+ /// Average satisfaction cost for [`TapTree`] with the leaf [`Miniscript`] nodes having
871
+ /// probabilities corresponding to the (sub)policies they're compiled from.
872
+ ///
873
+ /// Average satisfaction cost for [`TapTree`] over script-spend paths is probability times
874
+ /// the size of control block + the script size.
875
+ #[ cfg( feature = "compiler" ) ]
876
+ fn taptree_cost < Pk : MiniscriptKey > (
877
+ tr : & TapTree < Pk > ,
878
+ ms_cache : & MsTapCache < Pk > ,
879
+ policy_cache : & PolicyTapCache < Pk > ,
880
+ depth : u32 ,
881
+ ) -> f64 {
882
+ match * tr {
883
+ TapTree :: Tree ( ref l, ref r) => {
884
+ taptree_cost ( l, ms_cache, policy_cache, depth + 1 )
885
+ + taptree_cost ( r, ms_cache, policy_cache, depth + 1 )
886
+ }
887
+ TapTree :: Leaf ( ref ms) => {
888
+ let prob = ms_cache
889
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
890
+ . expect ( "Probability should exist for the given ms" ) ;
891
+ let sat_cost = policy_cache
892
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
893
+ . expect ( "Cost should exist for the given ms" )
894
+ . 1 ;
895
+ prob * ( ms. script_size ( ) as f64 + sat_cost + 32.0 * depth as f64 )
896
+ }
897
+ }
898
+ }
899
+
802
900
/// Create a Huffman Tree from compiled [Miniscript] nodes
803
901
#[ cfg( feature = "compiler" ) ]
804
902
fn with_huffman_tree < Pk : MiniscriptKey > (
@@ -829,3 +927,117 @@ fn with_huffman_tree<Pk: MiniscriptKey>(
829
927
. 1 ;
830
928
Ok ( node)
831
929
}
930
+
931
+ /// Create a [`TapTree`] from the a list of [`Miniscript`]s having corresponding satisfaction
932
+ /// cost and probability.
933
+ ///
934
+ /// Given that satisfaction probability and cost for each script is known, constructing the
935
+ /// [`TapTree`] as a huffman tree over the net cost (as defined in [`taptree_cost`]) is
936
+ /// the optimal one.
937
+ /// For finding the optimal policy to taptree compilation, we are required to search
938
+ /// exhaustively over all policies which have the same leaf policies. Owing to the exponential
939
+ /// blow-up for such a method, we use a heuristic where we augment the merge to check if the
940
+ /// compilation of a new (sub)policy into a [`TapTree::Leaf`] with the policy corresponding to
941
+ /// the nodes as children is better than [`TapTree::Tree`] with the nodes as children.
942
+ #[ cfg( feature = "compiler" ) ]
943
+ fn with_huffman_tree_eff < Pk : MiniscriptKey > (
944
+ ms : Vec < Arc < Miniscript < Pk , Tap > > > ,
945
+ policy_cache : & mut PolicyTapCache < Pk > ,
946
+ ms_cache : & mut MsTapCache < Pk > ,
947
+ ) -> Result < TapTree < Pk > , Error > {
948
+ let mut node_weights = BinaryHeap :: < ( Reverse < OrdF64 > , OrdF64 , TapTree < Pk > ) > :: new ( ) ; // (cost, branch_prob, tree)
949
+ // Populate the heap with each `ms` as a TapLeaf, and the respective cost fields
950
+ for script in ms {
951
+ let wt = OrdF64 ( taptree_cost (
952
+ & TapTree :: Leaf ( Arc :: clone ( & script) ) ,
953
+ ms_cache,
954
+ policy_cache,
955
+ 0 ,
956
+ ) ) ;
957
+ let prob = OrdF64 (
958
+ * ms_cache
959
+ . get ( & TapTree :: Leaf ( Arc :: clone ( & script) ) )
960
+ . expect ( "Probability should exist for the given ms" ) ,
961
+ ) ;
962
+ node_weights. push ( ( Reverse ( wt) , prob, TapTree :: Leaf ( Arc :: clone ( & script) ) ) ) ;
963
+ }
964
+ if node_weights. is_empty ( ) {
965
+ return Err ( errstr ( "Empty Miniscript compilation" ) ) ;
966
+ }
967
+ while node_weights. len ( ) > 1 {
968
+ // Obtain the two least-weighted nodes from the heap for merging
969
+ let ( _prev_cost1, p1, ms1) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
970
+ let ( _prev_cost2, p2, ms2) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
971
+
972
+ // Retrieve the respective policies
973
+ let ( left_pol, _c1) = policy_cache
974
+ . get ( & ms1)
975
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
976
+ . clone ( ) ;
977
+
978
+ let ( right_pol, _c2) = policy_cache
979
+ . get ( & ms2)
980
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
981
+ . clone ( ) ;
982
+
983
+ // Create a parent policy with the respective node TapTrees as children (with odds
984
+ // weighted approximately in ratio to their probabilities)
985
+ let parent_policy = Policy :: Or ( vec ! [
986
+ ( ( p1. 0 * 1e4 ) . round( ) as usize , left_pol) ,
987
+ ( ( p2. 0 * 1e4 ) . round( ) as usize , right_pol) ,
988
+ ] ) ;
989
+
990
+ // Obtain compilation for the parent policy
991
+ let ( parent_compilation, parent_sat_cost) =
992
+ compiler:: best_compilation_sat :: < Pk , Tap > ( & parent_policy) ?;
993
+
994
+ // Probability of the parent node being satisfied equals the probability of either
995
+ // nodes to be satisfied. Since we weight the odds appropriately, the children nodes
996
+ // still have approximately the same probabilities
997
+ let p = p1. 0 + p2. 0 ;
998
+ // Inserting parent policy's weights (sat_cost and probability) for later usage
999
+ ms_cache. insert ( TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) , p) ;
1000
+ policy_cache. insert (
1001
+ TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1002
+ ( parent_policy. clone ( ) , parent_sat_cost) ,
1003
+ ) ;
1004
+
1005
+ let parent_cost = OrdF64 ( taptree_cost (
1006
+ & TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1007
+ ms_cache,
1008
+ policy_cache,
1009
+ 0 ,
1010
+ ) ) ;
1011
+ let children_cost = OrdF64 (
1012
+ taptree_cost ( & ms1, ms_cache, policy_cache, 0 )
1013
+ + taptree_cost ( & ms2, ms_cache, policy_cache, 0 ) ,
1014
+ ) ;
1015
+
1016
+ // Merge the children nodes into either TapLeaf of the parent compilation or
1017
+ // TapTree children nodes accordingly
1018
+ node_weights. push ( if parent_cost > children_cost {
1019
+ ms_cache. insert (
1020
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1021
+ p,
1022
+ ) ;
1023
+ policy_cache. insert (
1024
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1025
+ ( parent_policy, parent_sat_cost) ,
1026
+ ) ;
1027
+ (
1028
+ Reverse ( children_cost) ,
1029
+ OrdF64 ( p) ,
1030
+ TapTree :: Tree ( Arc :: from ( ms1) , Arc :: from ( ms2) ) ,
1031
+ )
1032
+ } else {
1033
+ let node = TapTree :: Leaf ( Arc :: from ( parent_compilation) ) ;
1034
+ ( Reverse ( parent_cost) , OrdF64 ( p) , node)
1035
+ } ) ;
1036
+ }
1037
+ debug_assert ! ( node_weights. len( ) == 1 ) ;
1038
+ let node = node_weights
1039
+ . pop ( )
1040
+ . expect ( "huffman tree algorithm is broken" )
1041
+ . 2 ;
1042
+ Ok ( node)
1043
+ }
0 commit comments