|
| 1 | +//! NVPTX Packed data types (SIMD) |
| 2 | +//! |
| 3 | +//! Packed Data Types is what PTX calls SIMD types. See [PTX ISA (Packed Data Types)](https://docs.nvidia.com/cuda/parallel-thread-execution/#packed-data-types) for a full reference. |
| 4 | +
|
| 5 | +// Note: #[assert_instr] tests are not actually being run on nvptx due to being a `no_std` target incapable of running tests. Something like FileCheck would be appropriate for verifying the correct instruction is used. |
| 6 | + |
| 7 | +use crate::intrinsics::simd::*; |
| 8 | + |
| 9 | +#[allow(improper_ctypes)] |
| 10 | +extern "C" { |
| 11 | + #[link_name = "llvm.minimum.v2f16"] |
| 12 | + fn llvm_f16x2_min(a: f16x2, b: f16x2) -> f16x2; |
| 13 | + #[link_name = "llvm.maximum.v2f16"] |
| 14 | + fn llvm_f16x2_max(a: f16x2, b: f16x2) -> f16x2; |
| 15 | +} |
| 16 | + |
| 17 | +types! { |
| 18 | + /// PTX-specific 32-bit wide floating point (f16 x 2) vector type |
| 19 | + #[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 20 | + pub struct f16x2(f16, f16); |
| 21 | + |
| 22 | +} |
| 23 | + |
| 24 | +/// Add two values |
| 25 | +/// |
| 26 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-add> |
| 27 | +#[inline] |
| 28 | +#[cfg_attr(test, assert_instr(add.rn.f16x22))] |
| 29 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 30 | +pub unsafe fn f16x2_add(a: f16x2, b: f16x2) -> f16x2 { |
| 31 | + simd_add(a, b) |
| 32 | +} |
| 33 | + |
| 34 | +/// Subtract two values |
| 35 | +/// |
| 36 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-sub> |
| 37 | +#[inline] |
| 38 | +#[cfg_attr(test, assert_instr(sub.rn.f16x2))] |
| 39 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 40 | +pub unsafe fn f16x2_sub(a: f16x2, b: f16x2) -> f16x2 { |
| 41 | + simd_sub(a, b) |
| 42 | +} |
| 43 | + |
| 44 | +/// Multiply two values |
| 45 | +/// |
| 46 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-mul> |
| 47 | +#[inline] |
| 48 | +#[cfg_attr(test, assert_instr(mul.rn.f16x2))] |
| 49 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 50 | +pub unsafe fn f16x2_mul(a: f16x2, b: f16x2) -> f16x2 { |
| 51 | + simd_mul(a, b) |
| 52 | +} |
| 53 | + |
| 54 | +/// Fused multiply-add |
| 55 | +/// |
| 56 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-fma> |
| 57 | +#[inline] |
| 58 | +#[cfg_attr(test, assert_instr(fma.rn.f16x2))] |
| 59 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 60 | +pub unsafe fn f16x2_fma(a: f16x2, b: f16x2, c: f16x2) -> f16x2 { |
| 61 | + simd_fma(a, b, c) |
| 62 | +} |
| 63 | + |
| 64 | +/// Arithmetic negate |
| 65 | +/// |
| 66 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-neg> |
| 67 | +#[inline] |
| 68 | +#[cfg_attr(test, assert_instr(neg.f16x2))] |
| 69 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 70 | +pub unsafe fn f16x2_neg(a: f16x2) -> f16x2 { |
| 71 | + simd_neg(a) |
| 72 | +} |
| 73 | + |
| 74 | +/// Find the minimum of two values |
| 75 | +/// |
| 76 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-min> |
| 77 | +#[inline] |
| 78 | +#[cfg_attr(test, assert_instr(min.NaN.f16x2))] |
| 79 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 80 | +pub unsafe fn f16x2_min(a: f16x2, b: f16x2) -> f16x2 { |
| 81 | + llvm_f16x2_min(a, b) |
| 82 | +} |
| 83 | + |
| 84 | +/// Find the maximum of two values |
| 85 | +/// |
| 86 | +/// <https://docs.nvidia.com/cuda/parallel-thread-execution/#half-precision-floating-point-instructions-max> |
| 87 | +#[inline] |
| 88 | +#[cfg_attr(test, assert_instr(max.NaN.f16x2))] |
| 89 | +#[unstable(feature = "stdarch_nvptx", issue = "111199")] |
| 90 | +pub unsafe fn f16x2_max(a: f16x2, b: f16x2) -> f16x2 { |
| 91 | + llvm_f16x2_max(a, b) |
| 92 | +} |
0 commit comments