From 6be4cfd512ec609b57ac068dbd763f5d9c1248e1 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 21 Jun 2021 21:43:21 +0200 Subject: [PATCH 01/13] Implement Yaroslavskiy-Bentley-Bloch Quicksort. --- src/sort.rs | 234 +++++++++++++++++++++++++++++--------------------- tests/sort.rs | 23 +++-- 2 files changed, 149 insertions(+), 108 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index f43a95b1..0e4631e4 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -1,8 +1,6 @@ use indexmap::IndexMap; use ndarray::prelude::*; use ndarray::{Data, DataMut, Slice}; -use rand::prelude::*; -use rand::thread_rng; /// Methods for sorting and partitioning 1-D arrays. pub trait Sort1dExt @@ -50,26 +48,21 @@ where S: DataMut, S2: Data; - /// Partitions the array in increasing order based on the value initially - /// located at `pivot_index` and returns the new index of the value. + /// Partitions the array in increasing order based on the values initially located at `0` and + /// `n - 1` where `n` is the number of elements in the array and returns the new indexes of the + /// values. /// - /// The elements are rearranged in such a way that the value initially - /// located at `pivot_index` is moved to the position it would be in an - /// array sorted in increasing order. The return value is the new index of - /// the value after rearrangement. All elements smaller than the value are - /// moved to its left and all elements equal or greater than the value are - /// moved to its right. The ordering of the elements in the two partitions - /// is undefined. + /// The elements are rearranged in such a way that the values initially located at `0` and + /// `n - 1` are moved to the position it would be in an array sorted in increasing order. The + /// return values are the new indexes of the values after rearrangement. All elements less than + /// the values are moved to their left and all elements equal or greater than the values are + /// moved to their right. The ordering of the elements in the three partitions is undefined. /// - /// `self` is shuffled **in place** to operate the desired partition: - /// no copy of the array is allocated. + /// The array is shuffled **in place**, no copy of the array is allocated. /// - /// The method uses Hoare's partition algorithm. - /// Complexity: O(`n`), where `n` is the number of elements in the array. - /// Average number of element swaps: n/6 - 1/3 (see - /// [link](https://cs.stackexchange.com/questions/11458/quicksort-partitioning-hoare-vs-lomuto/11550)) + /// This method implements the partitioning scheme of [Yaroslavskiy-Bentley-Bloch Quicksort]. /// - /// **Panics** if `pivot_index` is greater than or equal to `n`. + /// [Yaroslavskiy-Bentley-Bloch Quicksort]: https://api.semanticscholar.org/CorpusID:51871084 /// /// # Example /// @@ -78,23 +71,30 @@ where /// use ndarray_stats::Sort1dExt; /// /// let mut data = array![3, 1, 4, 5, 2]; - /// let pivot_index = 2; - /// let pivot_value = data[pivot_index]; + /// // Sorted pivot values. + /// let (lower_value, upper_value) = (data[data.len() - 1], data[0]); /// - /// // Partition by the value located at `pivot_index`. - /// let new_index = data.partition_mut(pivot_index); - /// // The pivot value is now located at `new_index`. - /// assert_eq!(data[new_index], pivot_value); - /// // Elements less than that value are moved to the left. - /// for i in 0..new_index { - /// assert!(data[i] < pivot_value); + /// // Partitions by the values located at `0` and `data.len() - 1`. + /// let (lower_index, upper_index) = data.partition_mut(); + /// // The pivot values are now located at `lower_index` and `upper_index`. + /// assert_eq!(data[lower_index], lower_value); + /// assert_eq!(data[upper_index], upper_value); + /// // Elements lower than the lower pivot value are moved to its left. + /// for i in 0..lower_index { + /// assert!(data[i] < lower_value); + /// } + /// // Elements greater than or equal the lower pivot value and less than or equal the upper + /// // pivot value are moved between the two pivot indexes. + /// for i in lower_index + 1..upper_index { + /// assert!(lower_value <= data[i]); + /// assert!(data[i] <= upper_value); /// } - /// // Elements greater than or equal to that value are moved to the right. - /// for i in (new_index + 1)..data.len() { - /// assert!(data[i] >= pivot_value); + /// // Elements greater than or equal the upper pivot value are moved to its right. + /// for i in upper_index + 1..data.len() { + /// assert!(upper_value <= data[i]); /// } /// ``` - fn partition_mut(&mut self, pivot_index: usize) -> usize + fn partition_mut(&mut self) -> (usize, usize) where A: Ord + Clone, S: DataMut; @@ -115,17 +115,20 @@ where if n == 1 { self[0].clone() } else { - let mut rng = thread_rng(); - let pivot_index = rng.gen_range(0..n); - let partition_index = self.partition_mut(pivot_index); - if i < partition_index { - self.slice_axis_mut(Axis(0), Slice::from(..partition_index)) + let (lower_index, upper_index) = self.partition_mut(); + if i < lower_index { + self.slice_axis_mut(Axis(0), Slice::from(..lower_index)) .get_from_sorted_mut(i) - } else if i == partition_index { + } else if i == lower_index { + self[i].clone() + } else if i < upper_index { + self.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)) + .get_from_sorted_mut(i - (lower_index + 1)) + } else if i == upper_index { self[i].clone() } else { - self.slice_axis_mut(Axis(0), Slice::from(partition_index + 1..)) - .get_from_sorted_mut(i - (partition_index + 1)) + self.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)) + .get_from_sorted_mut(i - (upper_index + 1)) } } } @@ -143,42 +146,51 @@ where get_many_from_sorted_mut_unchecked(self, &deduped_indexes) } - fn partition_mut(&mut self, pivot_index: usize) -> usize + fn partition_mut(&mut self) -> (usize, usize) where A: Ord + Clone, S: DataMut, { - let pivot_value = self[pivot_index].clone(); - self.swap(pivot_index, 0); - let n = self.len(); - let mut i = 1; - let mut j = n - 1; - loop { - loop { - if i > j { - break; - } - if self[i] >= pivot_value { - break; + // Sort `lowermost` and `uppermost` elements and use them as dual pivot. + let lowermost = 0; + let uppermost = self.len() - 1; + if self[lowermost] > self[uppermost] { + self.swap(lowermost, uppermost); + } + // Increasing running and partition index starting after lower pivot. + let mut index = lowermost + 1; + let mut lower = lowermost + 1; + // Decreasing partition index starting before upper pivot. + let mut upper = uppermost - 1; + // Swap elements at `index` into their partitions. + while index <= upper { + if self[index] < self[lowermost] { + // Swap elements into lower partition. + self.swap(index, lower); + lower += 1; + } else if self[index] >= self[uppermost] { + // Search first element of upper partition. + while self[upper] > self[uppermost] && index < upper { + upper -= 1; } - i += 1; - } - while pivot_value <= self[j] { - if j == 1 { - break; + // Swap elements into upper partition. + self.swap(index, upper); + if self[index] < self[lowermost] { + // Swap swapped elements into lower partition. + self.swap(index, lower); + lower += 1; } - j -= 1; - } - if i >= j { - break; - } else { - self.swap(i, j); - i += 1; - j -= 1; + upper -= 1; } + index += 1; } - self.swap(0, i - 1); - i - 1 + lower -= 1; + upper += 1; + // Swap pivots to their new indexes. + self.swap(lowermost, lower); + self.swap(uppermost, upper); + // Lower and upper pivot index. + (lower, upper) } private_impl! {} @@ -249,50 +261,72 @@ fn _get_many_from_sorted_mut_unchecked( return; } - // We pick a random pivot index: the corresponding element is the pivot value - let mut rng = thread_rng(); - let pivot_index = rng.gen_range(0..n); + // We partition the array with respect to the two pivot values. The pivot values move to + // `lower_index` and `upper_index`. + // + // Elements strictly less than the lower pivot value have indexes < `lower_index`. + // + // Elements greater than or equal the lower pivot value and less than or equal the upper pivot + // value have indexes > `lower_index` and < `upper_index`. + // + // Elements less than or equal the upper pivot value have indexes > `upper_index`. + let (lower_index, upper_index) = array.partition_mut(); - // We partition the array with respect to the pivot value. - // The pivot value moves to `array_partition_index`. - // Elements strictly smaller than the pivot value have indexes < `array_partition_index`. - // Elements greater or equal to the pivot value have indexes > `array_partition_index`. - let array_partition_index = array.partition_mut(pivot_index); + // We use a divide-and-conquer strategy, splitting the indexes we are searching for (`indexes`) + // and the corresponding portions of the output slice (`values`) into partitions with respect to + // `lower_index` and `upper_index`. + let (found_exact, split_index) = match indexes.binary_search(&lower_index) { + Ok(index) => (true, index), + Err(index) => (false, index), + }; + let (lower_indexes, inner_indexes) = indexes.split_at_mut(split_index); + let (lower_values, inner_values) = values.split_at_mut(split_index); + let (upper_indexes, upper_values) = if found_exact { + inner_values[0] = array[lower_index].clone(); // Write exactly found value. + (&mut inner_indexes[1..], &mut inner_values[1..]) + } else { + (inner_indexes, inner_values) + }; - // We use a divide-and-conquer strategy, splitting the indexes we are - // searching for (`indexes`) and the corresponding portions of the output - // slice (`values`) into pieces with respect to `array_partition_index`. - let (found_exact, index_split) = match indexes.binary_search(&array_partition_index) { + let (found_exact, split_index) = match upper_indexes.binary_search(&upper_index) { Ok(index) => (true, index), Err(index) => (false, index), }; - let (smaller_indexes, other_indexes) = indexes.split_at_mut(index_split); - let (smaller_values, other_values) = values.split_at_mut(index_split); - let (bigger_indexes, bigger_values) = if found_exact { - other_values[0] = array[array_partition_index].clone(); // Write exactly found value. - (&mut other_indexes[1..], &mut other_values[1..]) + let (inner_indexes, upper_indexes) = upper_indexes.split_at_mut(split_index); + let (inner_values, upper_values) = upper_values.split_at_mut(split_index); + let (upper_indexes, upper_values) = if found_exact { + upper_values[0] = array[upper_index].clone(); // Write exactly found value. + (&mut upper_indexes[1..], &mut upper_values[1..]) } else { - (other_indexes, other_values) + (upper_indexes, upper_values) }; - // We search recursively for the values corresponding to strictly smaller - // indexes to the left of `partition_index`. + // We search recursively for the values corresponding to indexes strictly less than + // `lower_index` in the lower partition. + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(..lower_index)), + lower_indexes, + lower_values, + ); + + // We search recursively for the values corresponding to indexes greater than or equal + // `lower_index` in the inner partition, that is between the lower and upper partition. Since + // only the inner partition of the array is passed in, the indexes need to be shifted by length + // of the lower partition. + inner_indexes.iter_mut().for_each(|x| *x -= lower_index + 1); _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(..array_partition_index)), - smaller_indexes, - smaller_values, + array.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)), + inner_indexes, + inner_values, ); - // We search recursively for the values corresponding to strictly bigger - // indexes to the right of `partition_index`. Since only the right portion - // of the array is passed in, the indexes need to be shifted by length of - // the removed portion. - bigger_indexes - .iter_mut() - .for_each(|x| *x -= array_partition_index + 1); + // We search recursively for the values corresponding to indexes greater than or equal + // `upper_index` in the upper partition. Since only the upper partition of the array is passed + // in, the indexes need to be shifted by the combined length of the lower and inner partition. + upper_indexes.iter_mut().for_each(|x| *x -= upper_index + 1); _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(array_partition_index + 1..)), - bigger_indexes, - bigger_values, + array.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)), + upper_indexes, + upper_values, ); } diff --git a/tests/sort.rs b/tests/sort.rs index b2bd12f1..ff644356 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -19,15 +19,22 @@ fn test_partition_mut() { ]; for a in l.iter_mut() { let n = a.len(); - let pivot_index = n - 1; - let pivot_value = a[pivot_index].clone(); - let partition_index = a.partition_mut(pivot_index); - for i in 0..partition_index { - assert!(a[i] < pivot_value); + let (mut lower_value, mut upper_value) = (a[0].clone(), a[n - 1].clone()); + if lower_value > upper_value { + std::mem::swap(&mut lower_value, &mut upper_value); } - assert_eq!(a[partition_index], pivot_value); - for j in (partition_index + 1)..n { - assert!(pivot_value <= a[j]); + let (lower_index, upper_index) = a.partition_mut(); + for i in 0..lower_index { + assert!(a[i] < lower_value); + } + assert_eq!(a[lower_index], lower_value); + for i in lower_index + 1..upper_index { + assert!(lower_value <= a[i]); + assert!(a[i] <= upper_value); + } + assert_eq!(a[upper_index], upper_value); + for i in (upper_index + 1)..n { + assert!(upper_value <= a[i]); } } } From e6b7b02ba9e200f3bdfdf88daabc7421fcb3eee7 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Tue, 22 Jun 2021 22:29:26 +0200 Subject: [PATCH 02/13] Implement skewed pivot sampling. --- src/sort.rs | 48 +++++++++++++++++++++++++++++++++++------------- 1 file changed, 35 insertions(+), 13 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index 0e4631e4..3e19f2ea 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -48,21 +48,21 @@ where S: DataMut, S2: Data; - /// Partitions the array in increasing order based on the values initially located at `0` and - /// `n - 1` where `n` is the number of elements in the array and returns the new indexes of the - /// values. + /// Partitions the array in increasing order at two skewed pivot values as 1st and 3rd element + /// of a sorted sample of 5 equally spaced elements around the center and returns their indexes. + /// For arrays of less than 42 elements the outermost elements serve as sample for pivot values. /// - /// The elements are rearranged in such a way that the values initially located at `0` and - /// `n - 1` are moved to the position it would be in an array sorted in increasing order. The - /// return values are the new indexes of the values after rearrangement. All elements less than - /// the values are moved to their left and all elements equal or greater than the values are - /// moved to their right. The ordering of the elements in the three partitions is undefined. + /// The elements are rearranged in such a way that the two pivot values are moved to the indexes + /// they would be in an array sorted in increasing order. The return values are the new indexes + /// of the values after rearrangement. All elements less than the values are moved to their left + /// and all elements equal or greater than the values are moved to their right. The ordering of + /// the elements in the three partitions is undefined. /// /// The array is shuffled **in place**, no copy of the array is allocated. /// - /// This method implements the partitioning scheme of [Yaroslavskiy-Bentley-Bloch Quicksort]. + /// This method performs [dual-pivot partitioning] with skewed pivot sampling. /// - /// [Yaroslavskiy-Bentley-Bloch Quicksort]: https://api.semanticscholar.org/CorpusID:51871084 + /// [dual-pivot partitioning]: https://www.wild-inter.net/publications/wild-2018b.pdf /// /// # Example /// @@ -151,11 +151,33 @@ where A: Ord + Clone, S: DataMut, { - // Sort `lowermost` and `uppermost` elements and use them as dual pivot. let lowermost = 0; let uppermost = self.len() - 1; - if self[lowermost] > self[uppermost] { - self.swap(lowermost, uppermost); + if self.len() < 42 { + // Sort outermost elements and use them as pivots. + if self[lowermost] > self[uppermost] { + self.swap(lowermost, uppermost); + } + } else { + // Sample indexes of 5 evenly spaced elements around the center element. + let mut samples = [0; 5]; + // Assume array of at least 7 elements. + let seventh = self.len() / (samples.len() + 2); + samples[2] = self.len() / 2; + samples[1] = samples[2] - seventh; + samples[0] = samples[1] - seventh; + samples[3] = samples[2] + seventh; + samples[4] = samples[3] + seventh; + // Use insertion sort for sample elements by looking up their indexes. + for mut index in 1..samples.len() { + while index > 0 && self[samples[index - 1]] > self[samples[index]] { + self.swap(samples[index - 1], samples[index]); + index -= 1; + } + } + // Use 1st and 3rd element of sorted sample as skewed pivots. + self.swap(lowermost, samples[0]); + self.swap(uppermost, samples[2]); } // Increasing running and partition index starting after lower pivot. let mut index = lowermost + 1; From 0919c2bc57bf41124134f9229d9be300c678c09a Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 28 Jun 2021 21:12:36 +0200 Subject: [PATCH 03/13] Adapt pivot sampling to relative sought rank. --- src/sort.rs | 276 +++++++++++++++++++++++++++++++++++++++----------- tests/sort.rs | 44 ++++++-- 2 files changed, 249 insertions(+), 71 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index 3e19f2ea..b695b691 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -20,10 +20,10 @@ where /// No other assumptions should be made on the ordering of the /// elements after this computation. /// - /// Complexity ([quickselect](https://en.wikipedia.org/wiki/Quickselect)): - /// - average case: O(`n`); - /// - worst case: O(`n`^2); - /// where n is the number of elements in the array. + /// This method performs a variant of [Sesquickselect] with pivot samples of 5 equally spaced + /// elements around the center. + /// + /// [Sesquickselect]: https://www.wild-inter.net/publications/martinez-nebel-wild-2019.pdf /// /// **Panics** if `i` is greater than or equal to `n`. fn get_from_sorted_mut(&mut self, i: usize) -> A @@ -48,9 +48,65 @@ where S: DataMut, S2: Data; - /// Partitions the array in increasing order at two skewed pivot values as 1st and 3rd element - /// of a sorted sample of 5 equally spaced elements around the center and returns their indexes. - /// For arrays of less than 42 elements the outermost elements serve as sample for pivot values. + /// Sorts a sample of 5 equally spaced elements around the center and returns their indexes. + /// + /// **Panics** for arrays of less than 7 elements. + fn sample_mut(&mut self) -> [usize; 5] + where + A: Ord + Clone, + S: DataMut; + + /// Partitions the array in increasing order based on the value initially + /// located at `pivot_index` and returns the new index of the value. + /// + /// The elements are rearranged in such a way that the value initially + /// located at `pivot_index` is moved to the position it would be in an + /// array sorted in increasing order. The return value is the new index of + /// the value after rearrangement. All elements smaller than the value are + /// moved to its left and all elements equal or greater than the value are + /// moved to its right. The ordering of the elements in the two partitions + /// is undefined. + /// + /// `self` is shuffled **in place** to operate the desired partition: + /// no copy of the array is allocated. + /// + /// The method uses Hoare's partition algorithm. + /// Complexity: O(`n`), where `n` is the number of elements in the array. + /// Average number of element swaps: n/6 - 1/3 (see + /// [link](https://cs.stackexchange.com/questions/11458/quicksort-partitioning-hoare-vs-lomuto/11550)) + /// + /// **Panics** if `pivot_index` is greater than or equal to `n`. + /// + /// # Example + /// + /// ``` + /// use ndarray::array; + /// use ndarray_stats::Sort1dExt; + /// + /// let mut data = array![3, 1, 4, 5, 2]; + /// let pivot_index = 2; + /// let pivot_value = data[pivot_index]; + /// + /// // Partition by the value located at `pivot_index`. + /// let new_index = data.partition_mut(pivot_index); + /// // The pivot value is now located at `new_index`. + /// assert_eq!(data[new_index], pivot_value); + /// // Elements less than that value are moved to the left. + /// for i in 0..new_index { + /// assert!(data[i] < pivot_value); + /// } + /// // Elements greater than or equal to that value are moved to the right. + /// for i in (new_index + 1)..data.len() { + /// assert!(data[i] >= pivot_value); + /// } + /// ``` + fn partition_mut(&mut self, pivot_index: usize) -> usize + where + A: Ord + Clone, + S: DataMut; + + /// Partitions the array in increasing order based on the values initially located at the two + /// pivot indexes `lower` and `upper` and returns the new indexes of their values. /// /// The elements are rearranged in such a way that the two pivot values are moved to the indexes /// they would be in an array sorted in increasing order. The return values are the new indexes @@ -60,10 +116,12 @@ where /// /// The array is shuffled **in place**, no copy of the array is allocated. /// - /// This method performs [dual-pivot partitioning] with skewed pivot sampling. + /// This method performs [dual-pivot partitioning]. /// /// [dual-pivot partitioning]: https://www.wild-inter.net/publications/wild-2018b.pdf /// + /// **Panics** if `lower` or `upper` is out of bound. + /// /// # Example /// /// ``` @@ -71,11 +129,11 @@ where /// use ndarray_stats::Sort1dExt; /// /// let mut data = array![3, 1, 4, 5, 2]; - /// // Sorted pivot values. - /// let (lower_value, upper_value) = (data[data.len() - 1], data[0]); + /// // Skewed pivot values. + /// let (lower_value, upper_value) = (1, 5); /// - /// // Partitions by the values located at `0` and `data.len() - 1`. - /// let (lower_index, upper_index) = data.partition_mut(); + /// // Partitions by the values located at `1` and `3`. + /// let (lower_index, upper_index) = data.dual_partition_mut(1, 3); /// // The pivot values are now located at `lower_index` and `upper_index`. /// assert_eq!(data[lower_index], lower_value); /// assert_eq!(data[upper_index], upper_value); @@ -94,7 +152,7 @@ where /// assert!(upper_value <= data[i]); /// } /// ``` - fn partition_mut(&mut self) -> (usize, usize) + fn dual_partition_mut(&mut self, lower: usize, upper: usize) -> (usize, usize) where A: Ord + Clone, S: DataMut; @@ -112,23 +170,67 @@ where S: DataMut, { let n = self.len(); - if n == 1 { - self[0].clone() + // Recursion cutoff at integer multiple of sample space divider of 7 elements. + if n < 21 { + for mut index in 1..n { + while index > 0 && self[index - 1] > self[index] { + self.swap(index - 1, index); + index -= 1; + } + } + self[i].clone() } else { - let (lower_index, upper_index) = self.partition_mut(); - if i < lower_index { - self.slice_axis_mut(Axis(0), Slice::from(..lower_index)) - .get_from_sorted_mut(i) - } else if i == lower_index { - self[i].clone() - } else if i < upper_index { - self.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)) - .get_from_sorted_mut(i - (lower_index + 1)) - } else if i == upper_index { - self[i].clone() + // Adapt pivot sampling to relative sought rank and switch from dual-pivot to + // single-pivot partitioning for extreme sought ranks. + let sought_rank = i as f64 / n as f64; + if (0.036..=0.964).contains(&sought_rank) { + let (lower_index, upper_index) = if sought_rank <= 0.5 { + if sought_rank <= 0.153 { + (0, 1) // (0, 0, 3) + } else { + (0, 2) // (0, 1, 2) + } + } else { + if sought_rank <= 0.847 { + (2, 4) // (2, 1, 0) + } else { + (3, 4) // (3, 0, 0) + } + }; + let sample = self.sample_mut(); + let (lower_index, upper_index) = + self.dual_partition_mut(sample[lower_index], sample[upper_index]); + if i < lower_index { + self.slice_axis_mut(Axis(0), Slice::from(..lower_index)) + .get_from_sorted_mut(i) + } else if i == lower_index { + self[i].clone() + } else if i < upper_index { + self.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)) + .get_from_sorted_mut(i - (lower_index + 1)) + } else if i == upper_index { + self[i].clone() + } else { + self.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)) + .get_from_sorted_mut(i - (upper_index + 1)) + } } else { - self.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)) - .get_from_sorted_mut(i - (upper_index + 1)) + let sample = self.sample_mut(); + let pivot_index = if sought_rank <= 0.5 { + 0 // (0, 4) + } else { + 4 // (4, 0) + }; + let pivot_index = self.partition_mut(sample[pivot_index]); + if i < pivot_index { + self.slice_axis_mut(Axis(0), Slice::from(..pivot_index)) + .get_from_sorted_mut(i) + } else if i == pivot_index { + self[i].clone() + } else { + self.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)) + .get_from_sorted_mut(i - (pivot_index + 1)) + } } } } @@ -146,38 +248,80 @@ where get_many_from_sorted_mut_unchecked(self, &deduped_indexes) } - fn partition_mut(&mut self) -> (usize, usize) + fn sample_mut(&mut self) -> [usize; 5] where A: Ord + Clone, S: DataMut, { - let lowermost = 0; - let uppermost = self.len() - 1; - if self.len() < 42 { - // Sort outermost elements and use them as pivots. - if self[lowermost] > self[uppermost] { - self.swap(lowermost, uppermost); + // Space between sample indexes. + let space = self.len() / 7; + assert!(space > 0, "Cannot sample array of less then 7 elements"); + // Initialize sample indexes with their lowermost index. + let mut samples = [self.len() / 2 - 2 * space; 5]; + // Equally space sample indexes and sort by their values by looking up their indexes. + for mut index in 1..samples.len() { + // Equally space sample indexes based on their lowermost index. + samples[index] += index * space; + // Insertion sort looking up only the already equally spaced sample indexes. + while index > 0 && self[samples[index - 1]] > self[samples[index]] { + self.swap(samples[index - 1], samples[index]); + index -= 1; } - } else { - // Sample indexes of 5 evenly spaced elements around the center element. - let mut samples = [0; 5]; - // Assume array of at least 7 elements. - let seventh = self.len() / (samples.len() + 2); - samples[2] = self.len() / 2; - samples[1] = samples[2] - seventh; - samples[0] = samples[1] - seventh; - samples[3] = samples[2] + seventh; - samples[4] = samples[3] + seventh; - // Use insertion sort for sample elements by looking up their indexes. - for mut index in 1..samples.len() { - while index > 0 && self[samples[index - 1]] > self[samples[index]] { - self.swap(samples[index - 1], samples[index]); - index -= 1; + } + samples + } + + fn partition_mut(&mut self, pivot_index: usize) -> usize + where + A: Ord + Clone, + S: DataMut, + { + let pivot_value = self[pivot_index].clone(); + self.swap(pivot_index, 0); + let n = self.len(); + let mut i = 1; + let mut j = n - 1; + loop { + loop { + if i > j { + break; } + if self[i] >= pivot_value { + break; + } + i += 1; + } + while pivot_value <= self[j] { + if j == 1 { + break; + } + j -= 1; + } + if i >= j { + break; + } else { + self.swap(i, j); + i += 1; + j -= 1; } - // Use 1st and 3rd element of sorted sample as skewed pivots. - self.swap(lowermost, samples[0]); - self.swap(uppermost, samples[2]); + } + self.swap(0, i - 1); + i - 1 + } + + fn dual_partition_mut(&mut self, lower: usize, upper: usize) -> (usize, usize) + where + A: Ord + Clone, + S: DataMut, + { + let lowermost = 0; + let uppermost = self.len() - 1; + // Swap pivots with outermost elements. + self.swap(lowermost, lower); + self.swap(uppermost, upper); + if self[lowermost] > self[uppermost] { + // Sort pivots instead of panicking via assertion. + self.swap(lowermost, uppermost); } // Increasing running and partition index starting after lower pivot. let mut index = lowermost + 1; @@ -274,16 +418,26 @@ fn _get_many_from_sorted_mut_unchecked( return; } - // At this point, `n >= 1` since `indexes.len() >= 1`. - if n == 1 { - // We can only reach this point if `indexes.len() == 1`, so we only - // need to assign the single value, and then we're done. - debug_assert_eq!(indexes.len(), 1); - values[0] = array[0].clone(); + // Recursion cutoff at integer multiple of sample space divider of 7 elements. + if n < 21 { + for mut index in 1..n { + while index > 0 && array[index - 1] > array[index] { + array.swap(index - 1, index); + index -= 1; + } + } + for (value, index) in values.iter_mut().zip(indexes.iter()) { + *value = array[*index].clone(); + } return; } - // We partition the array with respect to the two pivot values. The pivot values move to + // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed pivot + // sampling of dual-pivot Quicksort is used. + let sample = array.sample_mut(); + let (lower_index, upper_index) = (sample[0], sample[2]); // (0, 1, 2) + + // We partition the array with respect to the two pivot values. The pivot values move to the new // `lower_index` and `upper_index`. // // Elements strictly less than the lower pivot value have indexes < `lower_index`. @@ -292,7 +446,7 @@ fn _get_many_from_sorted_mut_unchecked( // value have indexes > `lower_index` and < `upper_index`. // // Elements less than or equal the upper pivot value have indexes > `upper_index`. - let (lower_index, upper_index) = array.partition_mut(); + let (lower_index, upper_index) = array.dual_partition_mut(lower_index, upper_index); // We use a divide-and-conquer strategy, splitting the indexes we are searching for (`indexes`) // and the corresponding portions of the output slice (`values`) into partitions with respect to diff --git a/tests/sort.rs b/tests/sort.rs index ff644356..b298e88d 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -19,22 +19,46 @@ fn test_partition_mut() { ]; for a in l.iter_mut() { let n = a.len(); - let (mut lower_value, mut upper_value) = (a[0].clone(), a[n - 1].clone()); - if lower_value > upper_value { - std::mem::swap(&mut lower_value, &mut upper_value); + let pivot_index = n - 1; + let pivot_value = a[pivot_index].clone(); + let partition_index = a.partition_mut(pivot_index); + for i in 0..partition_index { + assert!(a[i] < pivot_value); } - let (lower_index, upper_index) = a.partition_mut(); + assert_eq!(a[partition_index], pivot_value); + for j in (partition_index + 1)..n { + assert!(pivot_value <= a[j]); + } + } +} + +#[test] +fn test_dual_partition_mut() { + let mut l = vec![ + arr1(&[1, 1, 1, 1, 1]), + arr1(&[1, 3, 2, 10, 10]), + arr1(&[2, 3, 4, 1]), + arr1(&[ + 355, 453, 452, 391, 289, 343, 44, 154, 271, 44, 314, 276, 160, 469, 191, 138, 163, 308, + 395, 3, 416, 391, 210, 354, 200, + ]), + arr1(&[ + 84, 192, 216, 159, 89, 296, 35, 213, 456, 278, 98, 52, 308, 418, 329, 173, 286, 106, + 366, 129, 125, 450, 23, 463, 151, + ]), + ]; + for a in l.iter_mut() { + let n = a.len(); + let (lower_index, upper_index) = a.dual_partition_mut(1, a.len() / 2); for i in 0..lower_index { - assert!(a[i] < lower_value); + assert!(a[i] < a[lower_index]); } - assert_eq!(a[lower_index], lower_value); for i in lower_index + 1..upper_index { - assert!(lower_value <= a[i]); - assert!(a[i] <= upper_value); + assert!(a[lower_index] <= a[i]); + assert!(a[i] <= a[upper_index]); } - assert_eq!(a[upper_index], upper_value); for i in (upper_index + 1)..n { - assert!(upper_value <= a[i]); + assert!(a[upper_index] <= a[i]); } } } From fc13897002acf85a3b692fd88967333046cfb1eb Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Wed, 30 Jun 2021 16:03:05 +0200 Subject: [PATCH 04/13] Make sampling an implementation detail. --- src/sort.rs | 67 +++++++++++++++++++++++++---------------------------- 1 file changed, 31 insertions(+), 36 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index b695b691..54f9d4a5 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -20,8 +20,7 @@ where /// No other assumptions should be made on the ordering of the /// elements after this computation. /// - /// This method performs a variant of [Sesquickselect] with pivot samples of 5 equally spaced - /// elements around the center. + /// This method performs [Sesquickselect]. /// /// [Sesquickselect]: https://www.wild-inter.net/publications/martinez-nebel-wild-2019.pdf /// @@ -48,14 +47,6 @@ where S: DataMut, S2: Data; - /// Sorts a sample of 5 equally spaced elements around the center and returns their indexes. - /// - /// **Panics** for arrays of less than 7 elements. - fn sample_mut(&mut self) -> [usize; 5] - where - A: Ord + Clone, - S: DataMut; - /// Partitions the array in increasing order based on the value initially /// located at `pivot_index` and returns the new index of the value. /// @@ -182,6 +173,8 @@ where } else { // Adapt pivot sampling to relative sought rank and switch from dual-pivot to // single-pivot partitioning for extreme sought ranks. + let mut sample = [0; 5]; + sample_mut(self, &mut sample); let sought_rank = i as f64 / n as f64; if (0.036..=0.964).contains(&sought_rank) { let (lower_index, upper_index) = if sought_rank <= 0.5 { @@ -197,7 +190,6 @@ where (3, 4) // (3, 0, 0) } }; - let sample = self.sample_mut(); let (lower_index, upper_index) = self.dual_partition_mut(sample[lower_index], sample[upper_index]); if i < lower_index { @@ -215,7 +207,6 @@ where .get_from_sorted_mut(i - (upper_index + 1)) } } else { - let sample = self.sample_mut(); let pivot_index = if sought_rank <= 0.5 { 0 // (0, 4) } else { @@ -248,29 +239,6 @@ where get_many_from_sorted_mut_unchecked(self, &deduped_indexes) } - fn sample_mut(&mut self) -> [usize; 5] - where - A: Ord + Clone, - S: DataMut, - { - // Space between sample indexes. - let space = self.len() / 7; - assert!(space > 0, "Cannot sample array of less then 7 elements"); - // Initialize sample indexes with their lowermost index. - let mut samples = [self.len() / 2 - 2 * space; 5]; - // Equally space sample indexes and sort by their values by looking up their indexes. - for mut index in 1..samples.len() { - // Equally space sample indexes based on their lowermost index. - samples[index] += index * space; - // Insertion sort looking up only the already equally spaced sample indexes. - while index > 0 && self[samples[index - 1]] > self[samples[index]] { - self.swap(samples[index - 1], samples[index]); - index -= 1; - } - } - samples - } - fn partition_mut(&mut self, pivot_index: usize) -> usize where A: Ord + Clone, @@ -434,7 +402,8 @@ fn _get_many_from_sorted_mut_unchecked( // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed pivot // sampling of dual-pivot Quicksort is used. - let sample = array.sample_mut(); + let mut sample = [0; 5]; + sample_mut(&mut array, &mut sample); let (lower_index, upper_index) = (sample[0], sample[2]); // (0, 1, 2) // We partition the array with respect to the two pivot values. The pivot values move to the new @@ -506,3 +475,29 @@ fn _get_many_from_sorted_mut_unchecked( upper_values, ); } + +/// Equally space `sample` indexes around the center of `array` and sort them by their values. +/// +/// `sample` content is ignored but its length defines the sample size and the sample space divider. +/// +/// Assumes arrays of at least `sample.len() + 2` elements. +pub(crate) fn sample_mut(array: &mut ArrayBase, sample: &mut [usize]) +where + A: Ord + Clone, + S: DataMut, +{ + // Space between sample indexes. + let space = array.len() / (sample.len() + 2); + // Lowermost sample index. + let lowermost = array.len() / 2 - (sample.len() / 2) * space; + // Equally space sample indexes and sort them by their values by looking up their indexes. + for mut index in 1..sample.len() { + // Equally space sample indexes based on their lowermost index. + sample[index] = lowermost + index * space; + // Insertion sort looking up only the already equally spaced sample indexes. + while index > 0 && array[sample[index - 1]] > array[sample[index]] { + array.swap(sample[index - 1], sample[index]); + index -= 1; + } + } +} From 2b1b502bd0d0c2d9971832ecf6b4f2c989c91b01 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Wed, 30 Jun 2021 16:04:22 +0200 Subject: [PATCH 05/13] Adapt pivot sampling for bulk version. --- src/sort.rs | 85 ++++++++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 78 insertions(+), 7 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index 54f9d4a5..0796ffee 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -171,10 +171,11 @@ where } self[i].clone() } else { - // Adapt pivot sampling to relative sought rank and switch from dual-pivot to - // single-pivot partitioning for extreme sought ranks. + // Sorted sample of 5 equally spaced elements around the center. let mut sample = [0; 5]; sample_mut(self, &mut sample); + // Adapt pivot sampling to relative sought rank and switch from dual-pivot to + // single-pivot partitioning for extreme sought ranks. let sought_rank = i as f64 / n as f64; if (0.036..=0.964).contains(&sought_rank) { let (lower_index, upper_index) = if sought_rank <= 0.5 { @@ -400,11 +401,80 @@ fn _get_many_from_sorted_mut_unchecked( return; } - // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed pivot - // sampling of dual-pivot Quicksort is used. + // Sorted sample of 5 equally spaced elements around the center. let mut sample = [0; 5]; sample_mut(&mut array, &mut sample); - let (lower_index, upper_index) = (sample[0], sample[2]); // (0, 1, 2) + let (lower_index, upper_index) = if indexes.len() == 1 { + // Adapt pivot sampling to relative sought rank and switch from dual-pivot to single-pivot + // partitioning for extreme sought ranks. + let sought_rank = indexes[0] as f64 / n as f64; + if (0.036..=0.964).contains(&sought_rank) { + if sought_rank <= 0.5 { + if sought_rank <= 0.153 { + (0, 1) // (0, 0, 3) + } else { + (0, 2) // (0, 1, 2) + } + } else { + if sought_rank <= 0.847 { + (2, 4) // (2, 1, 0) + } else { + (3, 4) // (3, 0, 0) + } + } + } else { + let pivot_index = if sought_rank <= 0.5 { + 0 // (0, 4) + } else { + 4 // (4, 0) + }; + + // We partition the array with respect to the pivot value. The pivot value moves to the + // new `pivot_index`. + // + // Elements strictly less than the pivot value have indexes < `pivot_index`. + // + // Elements greater than or equal the pivot value have indexes > `pivot_index`. + let pivot_index = array.partition_mut(sample[pivot_index]); + let (found_exact, split_index) = match indexes.binary_search(&pivot_index) { + Ok(index) => (true, index), + Err(index) => (false, index), + }; + let (lower_indexes, upper_indexes) = indexes.split_at_mut(split_index); + let (lower_values, upper_values) = values.split_at_mut(split_index); + let (upper_indexes, upper_values) = if found_exact { + upper_values[0] = array[pivot_index].clone(); // Write exactly found value. + (&mut upper_indexes[1..], &mut upper_values[1..]) + } else { + (upper_indexes, upper_values) + }; + + // We search recursively for the values corresponding to indexes strictly less than + // `pivot_index` in the lower partition. + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(..pivot_index)), + lower_indexes, + lower_values, + ); + + // We search recursively for the values corresponding to indexes greater than or equal + // `pivot_index` in the upper partition. Since only the upper partition of the array is + // passed in, the indexes need to be shifted by length of the lower partition. + upper_indexes.iter_mut().for_each(|x| *x -= pivot_index + 1); + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)), + upper_indexes, + upper_values, + ); + + return; + } + } else { + // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed + // pivot sampling of dual-pivot Quicksort is used in the assumption that multiple indexes + // change characteristics from Quickselect towards Quicksort. + (0, 2) // (0, 1, 2) + }; // We partition the array with respect to the two pivot values. The pivot values move to the new // `lower_index` and `upper_index`. @@ -414,8 +484,9 @@ fn _get_many_from_sorted_mut_unchecked( // Elements greater than or equal the lower pivot value and less than or equal the upper pivot // value have indexes > `lower_index` and < `upper_index`. // - // Elements less than or equal the upper pivot value have indexes > `upper_index`. - let (lower_index, upper_index) = array.dual_partition_mut(lower_index, upper_index); + // Elements greater than or equal the upper pivot value have indexes > `upper_index`. + let (lower_index, upper_index) = + array.dual_partition_mut(sample[lower_index], sample[upper_index]); // We use a divide-and-conquer strategy, splitting the indexes we are searching for (`indexes`) // and the corresponding portions of the output slice (`values`) into partitions with respect to From 78d334bb16ac26a59f2f646a022f783cd43cea4e Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Sat, 1 Apr 2023 11:37:56 +0200 Subject: [PATCH 06/13] Recursively grow stack on heap whenever necessary. * Add test with large array of equal floats. * Enable optimization for test profile to reduce execution time. --- Cargo.toml | 4 +++ src/sort.rs | 70 ++++++++++++++++++++++++++++++++------------------- tests/sort.rs | 8 ++++++ 3 files changed, 56 insertions(+), 26 deletions(-) diff --git a/Cargo.toml b/Cargo.toml index 892533e5..7587537e 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -23,6 +23,7 @@ num-traits = "0.2" rand = "0.8.3" itertools = { version = "0.10.0", default-features = false } indexmap = "1.6.2" +stacker = "0.1.15" [dev-dependencies] ndarray = { version = "0.15.0", features = ["approx"] } @@ -44,3 +45,6 @@ harness = false [[bench]] name = "deviation" harness = false + +[profile.test] +opt-level = 2 diff --git a/src/sort.rs b/src/sort.rs index 0796ffee..6d667302 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -1,6 +1,12 @@ use indexmap::IndexMap; use ndarray::prelude::*; use ndarray::{Data, DataMut, Slice}; +use stacker::maybe_grow; + +/// Guaranteed stack size per recursion step of 1 MiB. +const RED_ZONE: usize = 1_024 * 1_024; +/// New stack space of 8 MiB to allocate if within [`RED_ZONE`]. +const STACK_SIZE: usize = 8 * RED_ZONE; /// Methods for sorting and partitioning 1-D arrays. pub trait Sort1dExt @@ -357,7 +363,9 @@ where // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must // be non-empty. let mut values = vec![array[0].clone(); indexes.len()]; - _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); + }); // We convert the vector to a more search-friendly `IndexMap`. indexes.iter().cloned().zip(values.into_iter()).collect() @@ -451,21 +459,25 @@ fn _get_many_from_sorted_mut_unchecked( // We search recursively for the values corresponding to indexes strictly less than // `pivot_index` in the lower partition. - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(..pivot_index)), - lower_indexes, - lower_values, - ); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(..pivot_index)), + lower_indexes, + lower_values, + ); + }); // We search recursively for the values corresponding to indexes greater than or equal // `pivot_index` in the upper partition. Since only the upper partition of the array is // passed in, the indexes need to be shifted by length of the lower partition. upper_indexes.iter_mut().for_each(|x| *x -= pivot_index + 1); - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)), - upper_indexes, - upper_values, - ); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)), + upper_indexes, + upper_values, + ); + }); return; } @@ -519,32 +531,38 @@ fn _get_many_from_sorted_mut_unchecked( // We search recursively for the values corresponding to indexes strictly less than // `lower_index` in the lower partition. - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(..lower_index)), - lower_indexes, - lower_values, - ); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(..lower_index)), + lower_indexes, + lower_values, + ); + }); // We search recursively for the values corresponding to indexes greater than or equal // `lower_index` in the inner partition, that is between the lower and upper partition. Since // only the inner partition of the array is passed in, the indexes need to be shifted by length // of the lower partition. inner_indexes.iter_mut().for_each(|x| *x -= lower_index + 1); - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)), - inner_indexes, - inner_values, - ); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)), + inner_indexes, + inner_values, + ); + }); // We search recursively for the values corresponding to indexes greater than or equal // `upper_index` in the upper partition. Since only the upper partition of the array is passed // in, the indexes need to be shifted by the combined length of the lower and inner partition. upper_indexes.iter_mut().for_each(|x| *x -= upper_index + 1); - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)), - upper_indexes, - upper_values, - ); + maybe_grow(RED_ZONE, STACK_SIZE, || { + _get_many_from_sorted_mut_unchecked( + array.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)), + upper_indexes, + upper_values, + ); + }); } /// Equally space `sample` indexes around the center of `array` and sort them by their values. diff --git a/tests/sort.rs b/tests/sort.rs index b298e88d..56c14d66 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -1,5 +1,7 @@ use ndarray::prelude::*; use ndarray_stats::Sort1dExt; +use ndarray_stats::{interpolate::Linear, Quantile1dExt}; +use noisy_float::types::{n64, N64}; use quickcheck_macros::quickcheck; #[test] @@ -63,6 +65,12 @@ fn test_dual_partition_mut() { } } +#[test] +fn test_quantile_mut_with_large_array_of_equal_floats() { + let mut array: Array1 = Array1::ones(100000); + array.quantile_mut(n64(0.5), &Linear).unwrap(); +} + #[test] fn test_sorted_get_mut() { let a = arr1(&[1, 3, 2, 10]); From 23782e775a0e47eb973daff423b1ab7ce1d0a468 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Sun, 2 Apr 2023 11:04:06 +0200 Subject: [PATCH 07/13] Also protect non-bulk version from stack overflow. --- src/sort.rs | 34 +++++++++++++++++++++------------- tests/sort.rs | 2 +- 2 files changed, 22 insertions(+), 14 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index 6d667302..d3d3440a 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -200,18 +200,24 @@ where let (lower_index, upper_index) = self.dual_partition_mut(sample[lower_index], sample[upper_index]); if i < lower_index { - self.slice_axis_mut(Axis(0), Slice::from(..lower_index)) - .get_from_sorted_mut(i) + maybe_grow(RED_ZONE, STACK_SIZE, || { + self.slice_axis_mut(Axis(0), Slice::from(..lower_index)) + .get_from_sorted_mut(i) + }) } else if i == lower_index { self[i].clone() } else if i < upper_index { - self.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)) - .get_from_sorted_mut(i - (lower_index + 1)) + maybe_grow(RED_ZONE, STACK_SIZE, || { + self.slice_axis_mut(Axis(0), Slice::from(lower_index + 1..upper_index)) + .get_from_sorted_mut(i - (lower_index + 1)) + }) } else if i == upper_index { self[i].clone() } else { - self.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)) - .get_from_sorted_mut(i - (upper_index + 1)) + maybe_grow(RED_ZONE, STACK_SIZE, || { + self.slice_axis_mut(Axis(0), Slice::from(upper_index + 1..)) + .get_from_sorted_mut(i - (upper_index + 1)) + }) } } else { let pivot_index = if sought_rank <= 0.5 { @@ -221,13 +227,17 @@ where }; let pivot_index = self.partition_mut(sample[pivot_index]); if i < pivot_index { - self.slice_axis_mut(Axis(0), Slice::from(..pivot_index)) - .get_from_sorted_mut(i) + maybe_grow(RED_ZONE, STACK_SIZE, || { + self.slice_axis_mut(Axis(0), Slice::from(..pivot_index)) + .get_from_sorted_mut(i) + }) } else if i == pivot_index { self[i].clone() } else { - self.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)) - .get_from_sorted_mut(i - (pivot_index + 1)) + maybe_grow(RED_ZONE, STACK_SIZE, || { + self.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)) + .get_from_sorted_mut(i - (pivot_index + 1)) + }) } } } @@ -363,9 +373,7 @@ where // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must // be non-empty. let mut values = vec![array[0].clone(); indexes.len()]; - maybe_grow(RED_ZONE, STACK_SIZE, || { - _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); - }); + _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); // We convert the vector to a more search-friendly `IndexMap`. indexes.iter().cloned().zip(values.into_iter()).collect() diff --git a/tests/sort.rs b/tests/sort.rs index 56c14d66..ad4bc5ec 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -67,7 +67,7 @@ fn test_dual_partition_mut() { #[test] fn test_quantile_mut_with_large_array_of_equal_floats() { - let mut array: Array1 = Array1::ones(100000); + let mut array: Array1 = Array1::ones(100_000); array.quantile_mut(n64(0.5), &Linear).unwrap(); } From 359dc0c4cf1f40ee3292db31f8868a64f77fb379 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Sun, 2 Apr 2023 12:03:31 +0200 Subject: [PATCH 08/13] Avoid worst case complexity for equal elements. * Delegate single-index invocation to non-bulk implementation. * Non-bulk implementation skips recursion if `index == pivot`. --- src/sort.rs | 105 ++++++++++---------------------------------------- tests/sort.rs | 2 +- 2 files changed, 21 insertions(+), 86 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index d3d3440a..d5351fe5 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -366,17 +366,23 @@ where A: Ord + Clone, S: DataMut, { - if indexes.is_empty() { - return IndexMap::new(); - } - - // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must - // be non-empty. - let mut values = vec![array[0].clone(); indexes.len()]; - _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); + match indexes.len() { + 0 => IndexMap::new(), + 1 => IndexMap::from([(indexes[0], array.get_from_sorted_mut(indexes[0]))]), + _ => { + // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must + // be non-empty. + let mut values = vec![array[0].clone(); indexes.len()]; + _get_many_from_sorted_mut_unchecked( + array.view_mut(), + &mut indexes.to_owned(), + &mut values, + ); - // We convert the vector to a more search-friendly `IndexMap`. - indexes.iter().cloned().zip(values.into_iter()).collect() + // We convert the vector to a more search-friendly `IndexMap`. + indexes.iter().cloned().zip(values.into_iter()).collect() + } + } } /// This is the recursive portion of `get_many_from_sorted_mut_unchecked`. @@ -420,81 +426,10 @@ fn _get_many_from_sorted_mut_unchecked( // Sorted sample of 5 equally spaced elements around the center. let mut sample = [0; 5]; sample_mut(&mut array, &mut sample); - let (lower_index, upper_index) = if indexes.len() == 1 { - // Adapt pivot sampling to relative sought rank and switch from dual-pivot to single-pivot - // partitioning for extreme sought ranks. - let sought_rank = indexes[0] as f64 / n as f64; - if (0.036..=0.964).contains(&sought_rank) { - if sought_rank <= 0.5 { - if sought_rank <= 0.153 { - (0, 1) // (0, 0, 3) - } else { - (0, 2) // (0, 1, 2) - } - } else { - if sought_rank <= 0.847 { - (2, 4) // (2, 1, 0) - } else { - (3, 4) // (3, 0, 0) - } - } - } else { - let pivot_index = if sought_rank <= 0.5 { - 0 // (0, 4) - } else { - 4 // (4, 0) - }; - - // We partition the array with respect to the pivot value. The pivot value moves to the - // new `pivot_index`. - // - // Elements strictly less than the pivot value have indexes < `pivot_index`. - // - // Elements greater than or equal the pivot value have indexes > `pivot_index`. - let pivot_index = array.partition_mut(sample[pivot_index]); - let (found_exact, split_index) = match indexes.binary_search(&pivot_index) { - Ok(index) => (true, index), - Err(index) => (false, index), - }; - let (lower_indexes, upper_indexes) = indexes.split_at_mut(split_index); - let (lower_values, upper_values) = values.split_at_mut(split_index); - let (upper_indexes, upper_values) = if found_exact { - upper_values[0] = array[pivot_index].clone(); // Write exactly found value. - (&mut upper_indexes[1..], &mut upper_values[1..]) - } else { - (upper_indexes, upper_values) - }; - - // We search recursively for the values corresponding to indexes strictly less than - // `pivot_index` in the lower partition. - maybe_grow(RED_ZONE, STACK_SIZE, || { - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(..pivot_index)), - lower_indexes, - lower_values, - ); - }); - - // We search recursively for the values corresponding to indexes greater than or equal - // `pivot_index` in the upper partition. Since only the upper partition of the array is - // passed in, the indexes need to be shifted by length of the lower partition. - upper_indexes.iter_mut().for_each(|x| *x -= pivot_index + 1); - maybe_grow(RED_ZONE, STACK_SIZE, || { - _get_many_from_sorted_mut_unchecked( - array.slice_axis_mut(Axis(0), Slice::from(pivot_index + 1..)), - upper_indexes, - upper_values, - ); - }); - - return; - } - } else { - // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed - // pivot sampling of dual-pivot Quicksort is used in the assumption that multiple indexes - // change characteristics from Quickselect towards Quicksort. - (0, 2) // (0, 1, 2) - }; + // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed + // pivot sampling of dual-pivot Quicksort is used in the assumption that multiple indexes + // change characteristics from Quickselect towards Quicksort. + let (lower_index, upper_index) = (0, 2); // (0, 1, 2) // We partition the array with respect to the two pivot values. The pivot values move to the new // `lower_index` and `upper_index`. diff --git a/tests/sort.rs b/tests/sort.rs index ad4bc5ec..093fb0f6 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -67,7 +67,7 @@ fn test_dual_partition_mut() { #[test] fn test_quantile_mut_with_large_array_of_equal_floats() { - let mut array: Array1 = Array1::ones(100_000); + let mut array: Array1 = Array1::ones(1_000_000); array.quantile_mut(n64(0.5), &Linear).unwrap(); } From 4c3ae67468a3cd5befc8ea3bebb69c25e0ee0dc7 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Sun, 2 Apr 2023 14:01:51 +0200 Subject: [PATCH 09/13] Fix sample, allow single-pivot in bulk mode again. * Move single-index delegation into recursion allowing single-pivoting in bulk mode. * Avoid worst case complexity in non-bulk and bulk mode by using dual-pivot if both sample choices of single-pivot are equal. * Fix first sample index from being skipped. --- src/sort.rs | 34 ++++++++++++++++------------------ 1 file changed, 16 insertions(+), 18 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index d5351fe5..84bba799 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -183,7 +183,7 @@ where // Adapt pivot sampling to relative sought rank and switch from dual-pivot to // single-pivot partitioning for extreme sought ranks. let sought_rank = i as f64 / n as f64; - if (0.036..=0.964).contains(&sought_rank) { + if (0.036..=0.964).contains(&sought_rank) || self[sample[0]] == self[sample[4]] { let (lower_index, upper_index) = if sought_rank <= 0.5 { if sought_rank <= 0.153 { (0, 1) // (0, 0, 3) @@ -366,23 +366,17 @@ where A: Ord + Clone, S: DataMut, { - match indexes.len() { - 0 => IndexMap::new(), - 1 => IndexMap::from([(indexes[0], array.get_from_sorted_mut(indexes[0]))]), - _ => { - // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must - // be non-empty. - let mut values = vec![array[0].clone(); indexes.len()]; - _get_many_from_sorted_mut_unchecked( - array.view_mut(), - &mut indexes.to_owned(), - &mut values, - ); - - // We convert the vector to a more search-friendly `IndexMap`. - indexes.iter().cloned().zip(values.into_iter()).collect() - } + if indexes.is_empty() { + return IndexMap::new(); } + + // Since `!indexes.is_empty()` and indexes must be in-bounds, `array` must + // be non-empty. + let mut values = vec![array[0].clone(); indexes.len()]; + _get_many_from_sorted_mut_unchecked(array.view_mut(), &mut indexes.to_owned(), &mut values); + + // We convert the vector to a more search-friendly `IndexMap`. + indexes.iter().cloned().zip(values.into_iter()).collect() } /// This is the recursive portion of `get_many_from_sorted_mut_unchecked`. @@ -408,6 +402,10 @@ fn _get_many_from_sorted_mut_unchecked( // Nothing to do in this case. return; } + if indexes.len() == 1 { + values[0] = array.get_from_sorted_mut(indexes[0]); + return; + } // Recursion cutoff at integer multiple of sample space divider of 7 elements. if n < 21 { @@ -523,7 +521,7 @@ where // Lowermost sample index. let lowermost = array.len() / 2 - (sample.len() / 2) * space; // Equally space sample indexes and sort them by their values by looking up their indexes. - for mut index in 1..sample.len() { + for mut index in 0..sample.len() { // Equally space sample indexes based on their lowermost index. sample[index] = lowermost + index * space; // Insertion sort looking up only the already equally spaced sample indexes. From 05b87b4471f15e68a51380e0090898335661f782 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 3 Apr 2023 08:22:38 +0200 Subject: [PATCH 10/13] Make sampling public and test it. --- src/sort.rs | 88 +++++++++++++++++++++++++++++++++++---------------- tests/sort.rs | 47 +++++++++++++++++++++++++++ 2 files changed, 107 insertions(+), 28 deletions(-) diff --git a/src/sort.rs b/src/sort.rs index 84bba799..26918c49 100644 --- a/src/sort.rs +++ b/src/sort.rs @@ -154,6 +154,41 @@ where A: Ord + Clone, S: DataMut; + /// Equally spaces `sample` indexes around the center of `array` and sorts them by their values. + /// + /// `sample` content is ignored but its length defines the sample size and sample space divider. + /// + /// **Panics** if `self.len() < sample.len() + 2`. + /// + /// ``` + /// use ndarray::Array1; + /// use ndarray_stats::Sort1dExt; + /// use noisy_float::types::n64; + /// + /// // Define sample size of 5. + /// let mut sample = [0; 5]; + /// + /// // Create array from 100 down to 1; + /// let mut array = Array1::range(n64(100.0), n64(0.0), n64(-1.0)); + /// assert_eq!(array.len(), 100); + /// + /// // Find `sample` indices and sort their values `array[sample[s]]`. + /// array.sample_mut(&mut sample); + /// + /// // Equally spaced by 13 non-sample elements around center of 50. + /// let assert = [22, 36, 50, 64, 78]; + /// assert_eq!(sample, &assert[..]); + /// // Ensure `array[sample[s]]` is sorted. + /// assert_eq!(sample.map(|s| array[s]), assert.map(|s| s as f64)); + /// // Ensure reverse order of non-sample elements is preserved. + /// assert_eq!(array[49], n64(51.0)); + /// assert_eq!(array[51], n64(49.0)); + /// ``` + fn sample_mut(&mut self, sample: &mut [usize]) + where + A: Ord + Clone, + S: DataMut; + private_decl! {} } @@ -179,7 +214,7 @@ where } else { // Sorted sample of 5 equally spaced elements around the center. let mut sample = [0; 5]; - sample_mut(self, &mut sample); + self.sample_mut(&mut sample); // Adapt pivot sampling to relative sought rank and switch from dual-pivot to // single-pivot partitioning for extreme sought ranks. let sought_rank = i as f64 / n as f64; @@ -344,6 +379,29 @@ where (lower, upper) } + fn sample_mut(&mut self, sample: &mut [usize]) + where + A: Ord + Clone, + S: DataMut, + { + // Assumes arrays of at least `sample.len() + 2` elements. + assert!(self.len() >= sample.len() + 2); + // Space between sample indexes. + let space = self.len() / (sample.len() + 2); + // Lowermost sample index. + let lowermost = self.len() / 2 - (sample.len() / 2) * space; + // Equally space sample indexes and sort them by their values by looking up their indexes. + for mut index in 0..sample.len() { + // Equally space sample indexes based on their lowermost index. + sample[index] = lowermost + index * space; + // Insertion sort looking up only the already equally spaced sample indexes. + while index > 0 && self[sample[index - 1]] > self[sample[index]] { + self.swap(sample[index - 1], sample[index]); + index -= 1; + } + } + } + private_impl! {} } @@ -423,7 +481,7 @@ fn _get_many_from_sorted_mut_unchecked( // Sorted sample of 5 equally spaced elements around the center. let mut sample = [0; 5]; - sample_mut(&mut array, &mut sample); + array.sample_mut(&mut sample); // Since there is no single sought rank to adapt pivot sampling to, the recommended skewed // pivot sampling of dual-pivot Quicksort is used in the assumption that multiple indexes // change characteristics from Quickselect towards Quicksort. @@ -505,29 +563,3 @@ fn _get_many_from_sorted_mut_unchecked( ); }); } - -/// Equally space `sample` indexes around the center of `array` and sort them by their values. -/// -/// `sample` content is ignored but its length defines the sample size and the sample space divider. -/// -/// Assumes arrays of at least `sample.len() + 2` elements. -pub(crate) fn sample_mut(array: &mut ArrayBase, sample: &mut [usize]) -where - A: Ord + Clone, - S: DataMut, -{ - // Space between sample indexes. - let space = array.len() / (sample.len() + 2); - // Lowermost sample index. - let lowermost = array.len() / 2 - (sample.len() / 2) * space; - // Equally space sample indexes and sort them by their values by looking up their indexes. - for mut index in 0..sample.len() { - // Equally space sample indexes based on their lowermost index. - sample[index] = lowermost + index * space; - // Insertion sort looking up only the already equally spaced sample indexes. - while index > 0 && array[sample[index - 1]] > array[sample[index]] { - array.swap(sample[index - 1], sample[index]); - index -= 1; - } - } -} diff --git a/tests/sort.rs b/tests/sort.rs index 093fb0f6..09654abb 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -65,6 +65,53 @@ fn test_dual_partition_mut() { } } +#[test] +fn test_sample_mut() { + let mut sample = [0; 5]; + + let assert = [1, 2, 3, 4, 5]; + let mut array = Array1::range(n64(0.0), n64(7.0), n64(1.0)); + assert_eq!(array.len(), 7); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + + let assert = [2, 3, 4, 5, 6]; + let mut array = Array1::range(n64(0.0), n64(8.0), n64(1.0)); + assert_eq!(array.len(), 8); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + let mut array = Array1::range(n64(0.0), n64(9.0), n64(1.0)); + assert_eq!(array.len(), 9); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + + let assert = [3, 4, 5, 6, 7]; + let mut array = Array1::range(n64(0.0), n64(10.0), n64(1.0)); + assert_eq!(array.len(), 10); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + + let assert = [3, 5, 7, 9, 11]; + let mut array = Array1::range(n64(0.0), n64(14.0), n64(1.0)); + assert_eq!(array.len(), 14); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + + let assert = [22, 36, 50, 64, 78]; + let mut array = Array1::range(n64(0.0), n64(100.0), n64(1.0)); + assert_eq!(array.len(), 100); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + assert_eq!(sample.map(|s| array[s]), assert.map(|s| s as f64)); + + let assert = [22, 36, 50, 64, 78]; + let mut array = Array1::range(n64(100.0), n64(0.0), n64(-1.0)); + assert_eq!(array.len(), 100); + array.sample_mut(&mut sample); + assert_eq!(sample, &assert[..]); + assert_eq!(sample.map(|s| array[s]), assert.map(|s| s as f64)); +} + #[test] fn test_quantile_mut_with_large_array_of_equal_floats() { let mut array: Array1 = Array1::ones(1_000_000); From 34952ceddb767706f77815f7483e51bf48e5125a Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 3 Apr 2023 08:53:24 +0200 Subject: [PATCH 11/13] Add test with large (rev) sorted array of floats. --- tests/sort.rs | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/tests/sort.rs b/tests/sort.rs index 09654abb..7f13a78e 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -118,6 +118,18 @@ fn test_quantile_mut_with_large_array_of_equal_floats() { array.quantile_mut(n64(0.5), &Linear).unwrap(); } +#[test] +fn test_quantile_mut_with_large_array_of_sorted_floats() { + let mut array: Array1 = Array1::range(n64(0.0), n64(1_000_000.0), n64(1.0)); + array.quantile_mut(n64(0.5), &Linear).unwrap(); +} + +#[test] +fn test_quantile_mut_with_large_array_of_rev_sorted_floats() { + let mut array: Array1 = Array1::range(n64(1_000_000.0), n64(0.0), n64(-1.0)); + array.quantile_mut(n64(0.5), &Linear).unwrap(); +} + #[test] fn test_sorted_get_mut() { let a = arr1(&[1, 3, 2, 10]); From 4dc45a4806fd7e0c0feeb28ed7e01bfcb31df389 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 3 Apr 2023 09:08:05 +0200 Subject: [PATCH 12/13] Add tests and enlarge arrays. --- tests/sort.rs | 27 ++++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) diff --git a/tests/sort.rs b/tests/sort.rs index 7f13a78e..7657704d 100644 --- a/tests/sort.rs +++ b/tests/sort.rs @@ -114,22 +114,43 @@ fn test_sample_mut() { #[test] fn test_quantile_mut_with_large_array_of_equal_floats() { - let mut array: Array1 = Array1::ones(1_000_000); + let mut array: Array1 = Array1::ones(10_000_000); array.quantile_mut(n64(0.5), &Linear).unwrap(); } #[test] fn test_quantile_mut_with_large_array_of_sorted_floats() { - let mut array: Array1 = Array1::range(n64(0.0), n64(1_000_000.0), n64(1.0)); + let mut array: Array1 = Array1::range(n64(0.0), n64(1e7), n64(1.0)); array.quantile_mut(n64(0.5), &Linear).unwrap(); } #[test] fn test_quantile_mut_with_large_array_of_rev_sorted_floats() { - let mut array: Array1 = Array1::range(n64(1_000_000.0), n64(0.0), n64(-1.0)); + let mut array: Array1 = Array1::range(n64(1e7), n64(0.0), n64(-1.0)); array.quantile_mut(n64(0.5), &Linear).unwrap(); } +#[test] +fn test_quantiles_mut_with_large_array_of_equal_floats() { + let mut array: Array1 = Array1::ones(10_000_000); + let quantiles: Array1 = Array1::range(n64(0.0), n64(1.0), n64(1e-6)); + array.quantiles_mut(&quantiles, &Linear).unwrap(); +} + +#[test] +fn test_quantiles_mut_with_large_array_of_sorted_floats() { + let mut array: Array1 = Array1::range(n64(0.0), n64(1e7), n64(1.0)); + let quantiles: Array1 = Array1::range(n64(0.0), n64(1.0), n64(1e-6)); + array.quantiles_mut(&quantiles, &Linear).unwrap(); +} + +#[test] +fn test_quantiles_mut_with_large_array_of_rev_sorted_floats() { + let mut array: Array1 = Array1::range(n64(1e7), n64(0.0), n64(-1.0)); + let quantiles: Array1 = Array1::range(n64(0.0), n64(1.0), n64(1e-6)); + array.quantiles_mut(&quantiles, &Linear).unwrap(); +} + #[test] fn test_sorted_get_mut() { let a = arr1(&[1, 3, 2, 10]); From 0821516f551b3d2f02d83de8c4634a46ebd36241 Mon Sep 17 00:00:00 2001 From: Rouven Spreckels Date: Mon, 3 Apr 2023 10:11:47 +0200 Subject: [PATCH 13/13] Bump MSRV to 1.56 for `array_map`/`rust-version`. --- .github/workflows/ci.yml | 2 +- Cargo.toml | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index c651a39b..2db250fa 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -20,7 +20,7 @@ jobs: - stable - beta - nightly - - 1.49.0 # MSRV + - 1.56.0 # MSRV steps: - uses: actions/checkout@v2 - uses: actions-rs/toolchain@v1 diff --git a/Cargo.toml b/Cargo.toml index 7587537e..f0537f58 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -3,6 +3,7 @@ name = "ndarray-stats" version = "0.5.1" authors = ["Jim Turner ", "LukeMathWalker "] edition = "2018" +rust-version = "1.56" license = "MIT/Apache-2.0"