@@ -8495,3 +8495,168 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
8495
8495
kind = DimensionTag .Types .Spatial , description = "%s_rel_pos_enc_time" % name , dimension = None )
8496
8496
data = data .copy_template_new_dim_tags ((dummy_dim_tag , time_dim_tag , feature_dim_tag ))
8497
8497
return data
8498
+
8499
+
8500
+ class CumConcatLayer (_ConcatInputLayer ):
8501
+ """
8502
+ Concatenates all previous frames of a time-axis.
8503
+ Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8504
+
8505
+ This layer expects to be inside a :class:`RecLayer`.
8506
+
8507
+ Inside a rec loop (not optimized out),
8508
+ this will concatenate the current input
8509
+ to the previous accumulated inputs.
8510
+ For an input of shape `input_shape`,
8511
+ it will output a tensor of shape `[new_dim] + input_shape`.
8512
+ `new_dim` is a special dimension, usually of length `i`,
8513
+ where `i` is the current loop frame,
8514
+ i.e. the length increases in every loop frame.
8515
+ `new_dim` is specified by a separate own dim tag.
8516
+ For example, in the first frame,
8517
+ this will be of shape `[1] + input_shape`,
8518
+ in the second frame shape `[2] + input_shape`,
8519
+ and so on,
8520
+ and in the last frame shape `[T] + input_shape`.
8521
+
8522
+ Outside the rec loop (optimized out),
8523
+ this layer expects an input with the time dim of the rec layer,
8524
+ and returns the input as-is,
8525
+ but replacing the time dim tag with the dim tag `new_dim`
8526
+ converted as outside the loop.
8527
+
8528
+ Normally the optimization should not matter for the user,
8529
+ i.e. for the user, the logical behavior is always as being inside the rec loop.
8530
+ Outside the loop,
8531
+ the output represents a tensor of shape `[T, new_dim] + input_shape`,
8532
+ although we actually have another `new_dim` outside the loop,
8533
+ and `T` is not actually there,
8534
+ but we still have all the information,
8535
+ because the last frame has all information.
8536
+ """
8537
+ layer_class = "cum_concat"
8538
+ recurrent = True # order matters
8539
+
8540
+ def __init__ (self , new_dim , ** kwargs ):
8541
+ """
8542
+ :param DimensionTag new_dim:
8543
+ """
8544
+ super (CumConcatLayer , self ).__init__ (** kwargs )
8545
+ rec_layer = self .network .get_rec_parent_layer (inside_loop = False )
8546
+ assert rec_layer , "%r must be used inside a RecLayer" % self
8547
+ out_axis = self .output .get_axis_from_description (new_dim )
8548
+ new_dim_ = self .output .dim_tags [out_axis ]
8549
+
8550
+ if self .network .is_inside_rec_layer (inside_loop = True ):
8551
+ current_data = self .input_data .copy_compatible_to (self .output , unbroadcast = False )
8552
+ current_frame = current_data .placeholder # [B, 1, ..., D]
8553
+ last_frames = self ._rec_previous_layer .rec_vars_outputs ["state" ] # [B, t, ..., D]
8554
+ concat_frames = tf .concat ([last_frames , current_frame ], axis = out_axis ) # [B, t+1, ..., D]
8555
+ self .rec_vars_outputs ["state" ] = concat_frames
8556
+ self .output .placeholder = concat_frames
8557
+
8558
+ if not new_dim_ .dyn_size_ext :
8559
+ # Unbroadcasting to [B] is not needed because any layers operating on this
8560
+ # should be able to handle extended dyn sizes.
8561
+ # Clipping it to the max length for sequences in the loop which are already ended
8562
+ # (i.e. considering the end flag)
8563
+ # is also not needed because any calculations after the end are irrelevant.
8564
+ dyn_size = self .network .get_rec_step_index () + 1 # scalar
8565
+ new_dim_ .dyn_size_ext = Data (
8566
+ name = "%s:cum-concat:size-inside" % self .name ,
8567
+ dim_tags = [], # scalar
8568
+ placeholder = dyn_size )
8569
+
8570
+ else :
8571
+ # If not inside a rec loop, this layer is a no-op on the tensor.
8572
+ self .output .placeholder = self .input_data .placeholder
8573
+
8574
+ # However, we used new dim tags, which were already prepared.
8575
+ # We now must fill in the extended dynamic size information.
8576
+ if not new_dim_ .dyn_size_ext :
8577
+ # This must match the logic above for inside the loop.
8578
+ dyn_size = tf .range (tf .math .reduce_max (rec_layer .time_dim_tag .dyn_size )) + 1 # [T]
8579
+ new_dim_ .dyn_size_ext = Data (
8580
+ name = "%s:cum-concat:size-outside" % self .name ,
8581
+ dim_tags = [rec_layer .time_dim_tag ],
8582
+ placeholder = dyn_size )
8583
+
8584
+ @classmethod
8585
+ def get_out_data_from_opts (cls , name , network , sources , new_dim , ** kwargs ):
8586
+ """
8587
+ :param str name:
8588
+ :param returnn.tf.network.TFNetwork network:
8589
+ :param list[LayerBase] sources:
8590
+ :param DimensionTag new_dim:
8591
+ :rtype: Data
8592
+ """
8593
+ rec_layer = network .get_rec_parent_layer (inside_loop = False )
8594
+ assert rec_layer , "CumConcatLayer %r must be used inside a RecLayer" % name
8595
+ new_dim_base = new_dim .get_same_base ()
8596
+ if new_dim_base .per_spatial_frame is None :
8597
+ new_dim_base .per_spatial_frame = rec_layer .time_dim_tag
8598
+ else :
8599
+ assert new_dim_base .per_spatial_frame == rec_layer .time_dim_tag
8600
+
8601
+ input_data = get_concat_sources_data_template (sources , name = "%s_output" % name )
8602
+ if network .is_inside_rec_layer (inside_loop = True ):
8603
+ # Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8604
+ # Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8605
+ # In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8606
+ # which should be more efficient
8607
+ out = input_data .copy_as_batch_major ()
8608
+ out = out .copy_add_dim_by_tag (new_dim_base , unbroadcast = True , axis = 1 )
8609
+ return out
8610
+
8611
+ else : # outside loop
8612
+ if not new_dim_base .per_spatial_frame_accumulated :
8613
+ new_dim_accum = DimensionTag (
8614
+ kind = new_dim_base .kind , description = "%s:accumulated" % name )
8615
+ new_dim_accum .same_as = new_dim_base
8616
+ new_dim_base .per_spatial_frame_accumulated = new_dim_accum
8617
+ else :
8618
+ new_dim_accum = new_dim_base .per_spatial_frame_accumulated
8619
+ # Assume that the input has the time dim from the rec layer.
8620
+ axis = input_data .get_axis_from_description (rec_layer .time_dim_tag )
8621
+ return input_data .copy_template_replace_dim_tag (axis = axis , new_dim_tag = new_dim_accum )
8622
+
8623
+ # noinspection PyMethodOverriding
8624
+ @classmethod
8625
+ def get_rec_initial_extra_outputs (cls , network , batch_dim , rec_layer , sources , output , new_dim , ** kwargs ):
8626
+ """
8627
+ :param returnn.tf.network.TFNetwork network:
8628
+ :param tf.Tensor batch_dim:
8629
+ :param TFNetworkRecLayer.RecLayer|LayerBase rec_layer:
8630
+ :param list[LayerBase] sources:
8631
+ :param Data output:
8632
+ :param DimensionTag new_dim:
8633
+ :rtype: dict[str,tf.Tensor]
8634
+ """
8635
+ if network .is_inside_rec_layer ():
8636
+ shape = []
8637
+ for tag in output .dim_tags :
8638
+ if tag .is_batch_dim ():
8639
+ shape .append (batch_dim )
8640
+ elif tag == new_dim :
8641
+ shape .append (0 )
8642
+ elif tag .dimension is not None :
8643
+ shape .append (tag .dimension )
8644
+ else :
8645
+ assert tag .dyn_size is not None
8646
+ shape .append (tf .math .reduce_max (tag .dyn_size ))
8647
+ return {"state" : tf .zeros (shape , dtype = output .dtype )}
8648
+ else :
8649
+ return {}
8650
+
8651
+ @classmethod
8652
+ def get_rec_initial_extra_outputs_shape_invariants (cls , network , sources , output , ** kwargs ):
8653
+ """
8654
+ :param returnn.tf.network.TFNetwork network:
8655
+ :param list[LayerBase] sources:
8656
+ :param Data output:
8657
+ :rtype: dict[str, tf.TensorShape]
8658
+ """
8659
+ if network .is_inside_rec_layer ():
8660
+ return {"state" : tf .TensorShape (output .batch_shape )}
8661
+ else :
8662
+ return {}
0 commit comments