@@ -8531,3 +8531,173 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
8531
8531
kind = DimensionTag .Types .Spatial , description = "%s_rel_pos_enc_time" % name , dimension = None )
8532
8532
data = data .copy_template_new_dim_tags ((dummy_dim_tag , time_dim_tag , feature_dim_tag ))
8533
8533
return data
8534
+
8535
+
8536
+ class CumConcatLayer (_ConcatInputLayer ):
8537
+ """
8538
+ Concatenates all previous frames of a time-axis.
8539
+ Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8540
+
8541
+ This layer can be used as a base for auto-regressive self-attention.
8542
+
8543
+ This layer expects to be inside a :class:`RecLayer`.
8544
+
8545
+ Inside a rec loop (not optimized out),
8546
+ this will concatenate the current input
8547
+ to the previous accumulated inputs.
8548
+ For an input of shape `input_shape`,
8549
+ it will output a tensor of shape `[new_dim] + input_shape`.
8550
+ `new_dim` is a special dimension, usually of length `i`,
8551
+ where `i` is the current loop frame,
8552
+ i.e. the length increases in every loop frame.
8553
+ `new_dim` is specified by a separate own dim tag.
8554
+ For example, in the first frame,
8555
+ this will be of shape `[1] + input_shape`,
8556
+ in the second frame shape `[2] + input_shape`,
8557
+ and so on,
8558
+ and in the last frame shape `[T] + input_shape`.
8559
+
8560
+ Outside the rec loop (optimized out),
8561
+ this layer expects an input with the time dim of the rec layer,
8562
+ and returns the input as-is,
8563
+ but replacing the time dim tag with the dim tag `new_dim`
8564
+ converted as outside the loop.
8565
+
8566
+ Normally the optimization should not matter for the user,
8567
+ i.e. for the user, the logical behavior is always as being inside the rec loop.
8568
+ Outside the loop,
8569
+ the output represents a tensor of shape `[T, new_dim] + input_shape`,
8570
+ although we actually have another `new_dim` outside the loop,
8571
+ and `T` is not actually there,
8572
+ but we still have all the information,
8573
+ because the last frame has all information.
8574
+ This `new_dim` outside the loop stores all the dynamic seq lengths
8575
+ per frame of the loop, i.e. the dyn seq len are extended of shape [B,T] or [T]
8576
+ (unlike usually just [B]).
8577
+ This way following layers use different seq lengths of `new_dim` for different loop frames,
8578
+ just like if the `T` dim would actually exist.
8579
+ """
8580
+ layer_class = "cum_concat"
8581
+ recurrent = True # order matters
8582
+
8583
+ def __init__ (self , new_dim , ** kwargs ):
8584
+ """
8585
+ :param DimensionTag new_dim:
8586
+ """
8587
+ super (CumConcatLayer , self ).__init__ (** kwargs )
8588
+ rec_layer = self .network .get_rec_parent_layer (inside_loop = False )
8589
+ assert rec_layer , "%r must be used inside a RecLayer" % self
8590
+ out_axis = self .output .get_axis_from_description (new_dim )
8591
+ new_dim_ = self .output .dim_tags [out_axis ]
8592
+ assert new_dim_ .control_flow_ctx == self .output .control_flow_ctx == self .network .get_control_flow_ctx ()
8593
+
8594
+ if not self .input_data .has_axis (rec_layer .time_dim_tag ): # inside loop
8595
+ current_data = self .input_data .copy_compatible_to (self .output , unbroadcast = False )
8596
+ current_frame = current_data .placeholder # [B, 1, ..., D]
8597
+ last_frames = self ._rec_previous_layer .rec_vars_outputs ["state" ] # [B, t, ..., D]
8598
+ concat_frames = tf .concat ([last_frames , current_frame ], axis = out_axis ) # [B, t+1, ..., D]
8599
+ self .rec_vars_outputs ["state" ] = concat_frames
8600
+ self .output .placeholder = concat_frames
8601
+
8602
+ if not new_dim_ .dyn_size_ext :
8603
+ # Unbroadcasting to [B] is not needed because any layers operating on this
8604
+ # should be able to handle extended dyn sizes.
8605
+ # Clipping it to the max length for sequences in the loop which are already ended
8606
+ # (i.e. considering the end flag)
8607
+ # is also not needed because any calculations after the end are irrelevant.
8608
+ # Note: In case we have some initial state/output, this can be extended.
8609
+ dyn_size = self .network .get_rec_step_index () + 1 # scalar
8610
+ new_dim_ .dyn_size_ext = Data (
8611
+ name = "%s:cum-concat:size-inside" % self .name ,
8612
+ dim_tags = [], # scalar
8613
+ placeholder = dyn_size , dtype = "int32" ,
8614
+ batch = self .output .batch , control_flow_ctx = self .network .get_control_flow_ctx ())
8615
+
8616
+ else : # outside loop
8617
+ # If not inside a rec loop, this layer is a no-op on the tensor.
8618
+ self .output .placeholder = self .input_data .placeholder
8619
+
8620
+ # However, we used new dim tags, which were already prepared.
8621
+ # We now must fill in the extended dynamic size information.
8622
+ if not new_dim_ .dyn_size_ext :
8623
+ # This must match the logic above for inside the loop.
8624
+ # Note: In case we have some initial state/output, this can be extended.
8625
+ dyn_size = tf .range (tf .math .reduce_max (rec_layer .time_dim_tag .dyn_size )) + 1 # [T]
8626
+ new_dim_ .dyn_size_ext = Data (
8627
+ name = "%s:cum-concat:size-outside" % self .name ,
8628
+ dim_tags = [rec_layer .time_dim_tag ],
8629
+ placeholder = dyn_size , dtype = "int32" ,
8630
+ batch = self .output .batch , control_flow_ctx = self .network .get_control_flow_ctx ())
8631
+
8632
+ @classmethod
8633
+ def get_out_data_from_opts (cls , name , network , sources , new_dim , ** kwargs ):
8634
+ """
8635
+ :param str name:
8636
+ :param returnn.tf.network.TFNetwork network:
8637
+ :param list[LayerBase] sources:
8638
+ :param DimensionTag new_dim:
8639
+ :rtype: Data
8640
+ """
8641
+ input_data = get_concat_sources_data_template (sources , name = "%s_output" % name )
8642
+ assert network .is_inside_rec_layer (inside_loop = False ), "CumConcatLayer %r must be used inside a RecLayer" % name
8643
+ rec_time_dim = network .get_inside_rec_time_dim (inside_loop = False )
8644
+ assert rec_time_dim
8645
+ ctx = network .get_control_flow_ctx ()
8646
+ assert ctx == input_data .control_flow_ctx
8647
+ new_dim_in_ctx = new_dim .get_for_batch_ctx (batch = input_data .batch , ctx = ctx )
8648
+
8649
+ if not input_data .has_axis (rec_time_dim ): # inside loop
8650
+ assert ctx and ctx .is_loop () and ctx .loop_spatial_dim == rec_time_dim
8651
+ # Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8652
+ # Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8653
+ # In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8654
+ # which should be more efficient
8655
+ out = input_data .copy_as_batch_major ()
8656
+ out = out .copy_add_dim_by_tag (new_dim_in_ctx , unbroadcast = True , axis = 1 )
8657
+ return out
8658
+
8659
+ else : # outside loop
8660
+ # Assume that the input has the time dim from the rec layer.
8661
+ axis = input_data .get_axis_from_description (rec_time_dim )
8662
+ return input_data .copy_template_replace_dim_tag (axis = axis , new_dim_tag = new_dim_in_ctx )
8663
+
8664
+ # noinspection PyMethodOverriding
8665
+ @classmethod
8666
+ def get_rec_initial_extra_outputs (cls , network , batch_dim , rec_layer , sources , output , new_dim , ** kwargs ):
8667
+ """
8668
+ :param returnn.tf.network.TFNetwork network:
8669
+ :param tf.Tensor batch_dim:
8670
+ :param returnn.tf.layers.rec.RecLayer|LayerBase rec_layer:
8671
+ :param list[LayerBase] sources:
8672
+ :param Data output:
8673
+ :param DimensionTag new_dim:
8674
+ :rtype: dict[str,tf.Tensor]
8675
+ """
8676
+ if network .is_inside_rec_layer ():
8677
+ shape = []
8678
+ for tag in output .dim_tags :
8679
+ if tag .is_batch_dim ():
8680
+ shape .append (batch_dim )
8681
+ elif tag == new_dim :
8682
+ shape .append (0 )
8683
+ elif tag .dimension is not None :
8684
+ shape .append (tag .dimension )
8685
+ else :
8686
+ assert tag .dyn_size is not None
8687
+ shape .append (tf .math .reduce_max (tag .dyn_size ))
8688
+ return {"state" : tf .zeros (shape , dtype = output .dtype )}
8689
+ else :
8690
+ return {}
8691
+
8692
+ @classmethod
8693
+ def get_rec_initial_extra_outputs_shape_invariants (cls , network , sources , output , ** kwargs ):
8694
+ """
8695
+ :param returnn.tf.network.TFNetwork network:
8696
+ :param list[LayerBase] sources:
8697
+ :param Data output:
8698
+ :rtype: dict[str, tf.TensorShape]
8699
+ """
8700
+ if network .is_inside_rec_layer ():
8701
+ return {"state" : tf .TensorShape (output .batch_shape )}
8702
+ else :
8703
+ return {}
0 commit comments