@@ -8496,3 +8496,173 @@ def get_out_data_from_opts(cls, name, sources, n_out, **kwargs):
8496
8496
kind = DimensionTag .Types .Spatial , description = "%s_rel_pos_enc_time" % name , dimension = None )
8497
8497
data = data .copy_template_new_dim_tags ((dummy_dim_tag , time_dim_tag , feature_dim_tag ))
8498
8498
return data
8499
+
8500
+
8501
+ class CumConcatLayer (_ConcatInputLayer ):
8502
+ """
8503
+ Concatenates all previous frames of a time-axis.
8504
+ Like :class:`CumsumLayer` uses `sum`, this layer uses `concat`.
8505
+
8506
+ This layer expects to be inside a :class:`RecLayer`.
8507
+
8508
+ Inside a rec loop (not optimized out),
8509
+ this will concatenate the current input
8510
+ to the previous accumulated inputs.
8511
+ For an input of shape `input_shape`,
8512
+ it will output a tensor of shape `[new_dim] + input_shape`.
8513
+ `new_dim` is a special dimension, usually of length `i`,
8514
+ where `i` is the current loop frame,
8515
+ i.e. the length increases in every loop frame.
8516
+ `new_dim` is specified by a separate own dim tag.
8517
+ For example, in the first frame,
8518
+ this will be of shape `[1] + input_shape`,
8519
+ in the second frame shape `[2] + input_shape`,
8520
+ and so on,
8521
+ and in the last frame shape `[T] + input_shape`.
8522
+
8523
+ Outside the rec loop (optimized out),
8524
+ this layer expects an input with the time dim of the rec layer,
8525
+ and returns the input as-is,
8526
+ but replacing the time dim tag with the dim tag `new_dim`
8527
+ converted as outside the loop.
8528
+
8529
+ Normally the optimization should not matter for the user,
8530
+ i.e. for the user, the logical behavior is always as being inside the rec loop.
8531
+ Outside the loop,
8532
+ the output represents a tensor of shape `[T, new_dim] + input_shape`,
8533
+ although we actually have another `new_dim` outside the loop,
8534
+ and `T` is not actually there,
8535
+ but we still have all the information,
8536
+ because the last frame has all information.
8537
+
8538
+ This layer can be used as a base for auto-regressive self-attention.
8539
+ """
8540
+ layer_class = "cum_concat"
8541
+ recurrent = True # order matters
8542
+
8543
+ def __init__ (self , new_dim , ** kwargs ):
8544
+ """
8545
+ :param DimensionTag new_dim:
8546
+ """
8547
+ super (CumConcatLayer , self ).__init__ (** kwargs )
8548
+ rec_layer = self .network .get_rec_parent_layer (inside_loop = False )
8549
+ assert rec_layer , "%r must be used inside a RecLayer" % self
8550
+ out_axis = self .output .get_axis_from_description (new_dim )
8551
+ new_dim_ = self .output .dim_tags [out_axis ]
8552
+
8553
+ if not self .input_data .has_axis (rec_layer .time_dim_tag ): # inside loop
8554
+ current_data = self .input_data .copy_compatible_to (self .output , unbroadcast = False )
8555
+ current_frame = current_data .placeholder # [B, 1, ..., D]
8556
+ last_frames = self ._rec_previous_layer .rec_vars_outputs ["state" ] # [B, t, ..., D]
8557
+ concat_frames = tf .concat ([last_frames , current_frame ], axis = out_axis ) # [B, t+1, ..., D]
8558
+ self .rec_vars_outputs ["state" ] = concat_frames
8559
+ self .output .placeholder = concat_frames
8560
+
8561
+ if not new_dim_ .dyn_size_ext :
8562
+ # Unbroadcasting to [B] is not needed because any layers operating on this
8563
+ # should be able to handle extended dyn sizes.
8564
+ # Clipping it to the max length for sequences in the loop which are already ended
8565
+ # (i.e. considering the end flag)
8566
+ # is also not needed because any calculations after the end are irrelevant.
8567
+ # Note: In case we have some initial state/output, this can be extended.
8568
+ dyn_size = self .network .get_rec_step_index () + 1 # scalar
8569
+ new_dim_ .dyn_size_ext = Data (
8570
+ name = "%s:cum-concat:size-inside" % self .name ,
8571
+ dim_tags = [], # scalar
8572
+ placeholder = dyn_size , dtype = "int32" )
8573
+
8574
+ else : # inside loop
8575
+ # If not inside a rec loop, this layer is a no-op on the tensor.
8576
+ self .output .placeholder = self .input_data .placeholder
8577
+
8578
+ # However, we used new dim tags, which were already prepared.
8579
+ # We now must fill in the extended dynamic size information.
8580
+ if not new_dim_ .dyn_size_ext :
8581
+ # This must match the logic above for inside the loop.
8582
+ # Note: In case we have some initial state/output, this can be extended.
8583
+ dyn_size = tf .range (tf .math .reduce_max (rec_layer .time_dim_tag .dyn_size )) + 1 # [T]
8584
+ new_dim_ .dyn_size_ext = Data (
8585
+ name = "%s:cum-concat:size-outside" % self .name ,
8586
+ dim_tags = [rec_layer .time_dim_tag ],
8587
+ placeholder = dyn_size , dtype = "int32" )
8588
+
8589
+ @classmethod
8590
+ def get_out_data_from_opts (cls , name , network , sources , new_dim , ** kwargs ):
8591
+ """
8592
+ :param str name:
8593
+ :param returnn.tf.network.TFNetwork network:
8594
+ :param list[LayerBase] sources:
8595
+ :param DimensionTag new_dim:
8596
+ :rtype: Data
8597
+ """
8598
+ assert network .is_inside_rec_layer (inside_loop = False ), "CumConcatLayer %r must be used inside a RecLayer" % name
8599
+ rec_time_dim = network .get_inside_rec_time_dim (inside_loop = False )
8600
+ assert rec_time_dim
8601
+ new_dim_base = new_dim .get_same_base ()
8602
+ if new_dim_base .per_spatial_frame is None :
8603
+ new_dim_base .per_spatial_frame = rec_time_dim
8604
+ else :
8605
+ assert new_dim_base .per_spatial_frame == rec_time_dim
8606
+
8607
+ input_data = get_concat_sources_data_template (sources , name = "%s_output" % name )
8608
+ if not input_data .has_axis (rec_time_dim ): # inside loop
8609
+ # Currently SelectSearchSourcesLayer assumes that all rec_vars_outputs are batch-major.
8610
+ # Therefore we here copy the input as batch-major, and then add the time axis at axis 1.
8611
+ # In the future, when SelectSearchSourcesLayer has support for this, we can change this to operate on axis 0,
8612
+ # which should be more efficient
8613
+ out = input_data .copy_as_batch_major ()
8614
+ out = out .copy_add_dim_by_tag (new_dim_base , unbroadcast = True , axis = 1 )
8615
+ return out
8616
+
8617
+ else : # outside loop
8618
+ if not new_dim_base .per_spatial_frame_accumulated :
8619
+ new_dim_accum = DimensionTag (
8620
+ kind = new_dim_base .kind , description = "%s:accumulated" % name )
8621
+ new_dim_accum .same_as = new_dim_base
8622
+ new_dim_base .per_spatial_frame_accumulated = new_dim_accum
8623
+ else :
8624
+ new_dim_accum = new_dim_base .per_spatial_frame_accumulated
8625
+ # Assume that the input has the time dim from the rec layer.
8626
+ axis = input_data .get_axis_from_description (rec_time_dim )
8627
+ return input_data .copy_template_replace_dim_tag (axis = axis , new_dim_tag = new_dim_accum )
8628
+
8629
+ # noinspection PyMethodOverriding
8630
+ @classmethod
8631
+ def get_rec_initial_extra_outputs (cls , network , batch_dim , rec_layer , sources , output , new_dim , ** kwargs ):
8632
+ """
8633
+ :param returnn.tf.network.TFNetwork network:
8634
+ :param tf.Tensor batch_dim:
8635
+ :param TFNetworkRecLayer.RecLayer|LayerBase rec_layer:
8636
+ :param list[LayerBase] sources:
8637
+ :param Data output:
8638
+ :param DimensionTag new_dim:
8639
+ :rtype: dict[str,tf.Tensor]
8640
+ """
8641
+ if network .is_inside_rec_layer ():
8642
+ shape = []
8643
+ for tag in output .dim_tags :
8644
+ if tag .is_batch_dim ():
8645
+ shape .append (batch_dim )
8646
+ elif tag == new_dim :
8647
+ shape .append (0 )
8648
+ elif tag .dimension is not None :
8649
+ shape .append (tag .dimension )
8650
+ else :
8651
+ assert tag .dyn_size is not None
8652
+ shape .append (tf .math .reduce_max (tag .dyn_size ))
8653
+ return {"state" : tf .zeros (shape , dtype = output .dtype )}
8654
+ else :
8655
+ return {}
8656
+
8657
+ @classmethod
8658
+ def get_rec_initial_extra_outputs_shape_invariants (cls , network , sources , output , ** kwargs ):
8659
+ """
8660
+ :param returnn.tf.network.TFNetwork network:
8661
+ :param list[LayerBase] sources:
8662
+ :param Data output:
8663
+ :rtype: dict[str, tf.TensorShape]
8664
+ """
8665
+ if network .is_inside_rec_layer ():
8666
+ return {"state" : tf .TensorShape (output .batch_shape )}
8667
+ else :
8668
+ return {}
0 commit comments