@@ -6837,6 +6837,160 @@ def test_RelativePositionalEncodingLayer():
6837
6837
print (out ) # random...
6838
6838
6839
6839
6840
+ def _build_self_attention_layer (d , input , output , inside_rec_layer , query_axis , num_heads = 8 , key_dim = 64 ,
6841
+ value_dim = 64 , dropout = 0.0 ):
6842
+ """
6843
+ Essentially this does
6844
+ d[output + '_att'] = {"class": "self_attention", "num_heads": num_heads,
6845
+ "total_key_dim": num_heads * key_dim,
6846
+ "n_out": num_heads * value_dim, "from": [input],
6847
+ "attention_left_only": inside_rec_layer,
6848
+ "attention_dropout": dropout, "forward_weights_init": self.ff_init}
6849
+ But using multiple layers.
6850
+ """
6851
+ # Create (non-accumulated) query, key and value
6852
+ d [output + '_qkv0' ] = {
6853
+ 'class' : 'linear' , 'activation' : None , 'with_bias' : False , 'from' : [input ],
6854
+ 'n_out' : num_heads * (2 * key_dim + value_dim )} # [B,T?,F|n*(2d_k+d_v)]
6855
+ d [output + '_qkv' ] = {
6856
+ 'class' : 'split_dims' , 'axis' : 'F' , 'dims' : (num_heads , 2 * key_dim + value_dim ),
6857
+ 'from' : [output + '_qkv0' ]} # [B,T?,n,F|2d_k+d_v]
6858
+ d [output + '_qkv_split' ] = {
6859
+ 'class' : 'split' , 'axis' : 'F' , 'size_splits' : (key_dim , key_dim , value_dim ), 'from' : [output + '_qkv' ]}
6860
+ d [output + '_query' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/0' ]} # [B,T?,n,F|d_k]
6861
+ d [output + '_key' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/1' ]} # [B,T?,n,F|d_k]
6862
+ d [output + '_value' ] = {'class' : 'copy' , 'from' : [output + '_qkv_split/2' ]} # [B,T?,n,F|d_v]
6863
+
6864
+ # Accumulate keys/values or rename the axis
6865
+ key_dim_tag = DimensionTag (kind = DimensionTag .Types .Time , description = 'self-att-keys' )
6866
+ key_axis = 'stag:' + key_dim_tag .description
6867
+ if inside_rec_layer :
6868
+ d [output + '_key_accum' ] = {
6869
+ 'class' : 'cum_concat' , 'from' : [output + '_key' ], 'new_dim' : key_dim_tag } # [B,T|rec-history,n,F|d_k]
6870
+ d [output + '_value_accum' ] = {
6871
+ 'class' : 'cum_concat' , 'from' : [output + '_value' ], 'new_dim' : key_dim_tag } # [B,T|rec-history,n,F|d_v]
6872
+ else :
6873
+ d [output + '_key_accum' ] = {
6874
+ 'class' : 'reinterpret_data' , 'set_dim_tags' : {query_axis : key_dim_tag },
6875
+ 'from' : [output + '_key' ]} # [B,T|keys,n,F|d_k]
6876
+ d [output + '_value_accum' ] = {
6877
+ 'class' : 'reinterpret_data' , 'set_dim_tags' : {query_axis : key_dim_tag },
6878
+ 'from' : [output + '_value' ]} # [B,T|keys,n,F|d_v]
6879
+
6880
+ # Calculate the energies
6881
+ d [output + '_energy' ] = {
6882
+ 'class' : 'dot' , 'from' : [output + '_query' , output + '_key_accum' ],
6883
+ 'red1' : 'static:-1' , 'red2' : 'static:-1' ,
6884
+ 'var1' : None if inside_rec_layer else query_axis , 'var2' : key_dim_tag } # [B,n,T?,T|rec-history]
6885
+
6886
+ d [output + '_weights' ] = {
6887
+ 'class' : 'softmax_over_spatial' , 'from' : [output + '_energy' ], 'axis' : key_axis ,
6888
+ 'energy_factor' : key_dim ** - 0.5 } # [B,n,T?,T|rec-history]
6889
+ d [output + '_weights_drop' ] = {
6890
+ 'class' : 'dropout' , 'dropout_noise_shape' : {'*' : None }, 'from' : [output + '_weights' ],
6891
+ 'dropout' : dropout } # [B,n,T?,T|rec-history]
6892
+
6893
+ d [output + '_output' ] = {
6894
+ 'class' : 'dot' , 'from' : [output + '_weights_drop' , output + '_value_accum' ],
6895
+ 'red1' : key_axis , 'red2' : key_axis ,
6896
+ "var1" : None if inside_rec_layer else query_axis , "var2" : "static:-1" } # [B,n,T?,F|d_v]
6897
+ d [output + '_att' ] = {'class' : 'merge_dims' , 'axes' : 'static' , 'from' : [output + '_output' ]} # [B,T?,F|n*d_v]
6898
+
6899
+
6900
+ def test_CumConcatLayer_self_attention_equal_to_SelfAttentionLayer ():
6901
+ n_time = 13
6902
+ num_heads , key_dim , value_dim = 2 , 3 , 3
6903
+ for inside_rec_layer in [False , True ]:
6904
+ with make_scope () as session :
6905
+ print ('Testing inside_rec_layer=%s' % inside_rec_layer )
6906
+
6907
+ # build net dict
6908
+ if inside_rec_layer :
6909
+ net_dict = {
6910
+ "output" : {
6911
+ "class" : "rec" , "target" : "classes" , "from" : [],
6912
+ "unit" : {
6913
+ "single_layer_att" : {
6914
+ "class" : "self_attention" , "from" : "prev:single_layer_att" , "num_heads" : num_heads ,
6915
+ "total_key_dim" : num_heads * key_dim , "n_out" : num_heads * value_dim ,
6916
+ "attention_left_only" : inside_rec_layer , 'is_output_layer' : True }, # [B,T,F]
6917
+ "multi_layer_att" : None , # [B,T,F], added below.
6918
+ "output" : {"class" : "compare" , "from" : ["single_layer_att" , "multi_layer_att" ]}}}}
6919
+ _build_self_attention_layer (
6920
+ net_dict ["output" ]["unit" ], 'prev:multi_layer_att' , 'multi_layer' , inside_rec_layer = True ,
6921
+ query_axis = 'stag:extern_data:classes' , num_heads = num_heads , key_dim = key_dim , value_dim = value_dim )
6922
+ net_dict ["output" ]["unit" ]["multi_layer_att" ]["is_output_layer" ] = True
6923
+ net_dict ["output" ]["unit" ]["multi_layer_qkv0" ]["is_output_layer" ] = True # we need to set the matrix here
6924
+ else :
6925
+ net_dict = {
6926
+ "single_layer_att" : {
6927
+ "class" : "self_attention" , "from" : "data" , "num_heads" : num_heads , "total_key_dim" : num_heads * key_dim ,
6928
+ "n_out" : num_heads * value_dim , "attention_left_only" : inside_rec_layer ,
6929
+ 'is_output_layer' : True }, # [B,T,F]
6930
+ "multi_layer_att" : None , # [B,T,F], added below.
6931
+ "output" : {"class" : "compare" , "from" : ["single_layer_att" , "multi_layer_att" ]}
6932
+ }
6933
+ _build_self_attention_layer (
6934
+ net_dict , 'data' , 'multi_layer' , inside_rec_layer = False , query_axis = 'stag:extern_data:data' ,
6935
+ num_heads = num_heads , key_dim = key_dim , value_dim = value_dim )
6936
+ net_dict ["multi_layer_att" ]["is_output_layer" ] = True
6937
+
6938
+ config = Config ({
6939
+ "debug_print_layer_output_template" : True , "optimize_move_layers_out" : True })
6940
+ config .update (dict (num_inputs = num_heads * key_dim , num_outputs = num_heads * value_dim ))
6941
+ network = TFNetwork (config = config , train_flag = True )
6942
+ from pprint import pprint
6943
+ pprint (net_dict )
6944
+ network .construct_from_dict (net_dict )
6945
+
6946
+ if inside_rec_layer :
6947
+ single_layer = network .get_layer ("output/single_layer_att" )
6948
+ multi_layer = network .get_layer ("output/multi_layer_att" )
6949
+
6950
+ # Note: single_layer.params etc. do not contain the params, need to access rec cell directly
6951
+ rec_layer = network .get_layer ("output" )
6952
+ single_weights = rec_layer .cell .net .get_layer ("single_layer_att" ).params ["QKV" ]
6953
+ multi_weights = rec_layer .cell .net .get_layer ("multi_layer_qkv0" ).params ["W" ]
6954
+ else :
6955
+ single_layer = network .get_layer ("single_layer_att" )
6956
+ multi_layer = network .get_layer ("multi_layer_att" )
6957
+ single_weights = single_layer .params ["QKV" ]
6958
+ multi_weights = network .get_layer ("multi_layer_qkv0" ).params ["W" ]
6959
+
6960
+ assert_equal (single_layer .output .batch_shape , (None , None , num_heads * value_dim ))
6961
+ assert_equal (multi_layer .output .batch_shape , (None , None , num_heads * value_dim ))
6962
+
6963
+ # set weights equal.
6964
+ assert_equal (single_weights .shape , multi_weights .shape )
6965
+ weights = numpy .random .rand (* single_weights .shape )
6966
+ session .run (tf .compat .v1 .assign (single_weights , weights ))
6967
+ session .run (tf .compat .v1 .assign (multi_weights , weights ))
6968
+
6969
+ # fetch/compare outputs
6970
+ from tests .test_TFNetworkLayer import make_feed_dict
6971
+ feed_dict = make_feed_dict (network .extern_data .data .values (), same_time = True , n_time = n_time )
6972
+ single , multi = session .run (
6973
+ [single_layer .output .placeholder , multi_layer .output .placeholder ], feed_dict = feed_dict )
6974
+ print ('single layer output:' )
6975
+ pprint (single )
6976
+ print ('multi layer output:' )
6977
+ pprint (multi )
6978
+ numpy .testing .assert_almost_equal (single , multi , decimal = 5 )
6979
+ print ('They are equal!' )
6980
+
6981
+
6982
+ def test_self_attention_optimize_out ():
6983
+ num_heads , key_dim , value_dim = 2 , 3 , 3
6984
+ network = {}
6985
+ _build_self_attention_layer (
6986
+ network , 'data:source' , 'att' , inside_rec_layer = True , query_axis = 'stag:extern_data:data' ,
6987
+ num_heads = num_heads , key_dim = key_dim , value_dim = value_dim )
6988
+
6989
+ check_reclayer_optimize_out (
6990
+ {'class' : 'copy' , 'from' : 'att_att' , 'n_out' : value_dim * num_heads },
6991
+ other_subnet_layers = network )
6992
+
6993
+
6840
6994
if __name__ == "__main__" :
6841
6995
try :
6842
6996
better_exchook .install ()
0 commit comments