-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexpression.py
112 lines (78 loc) · 3.35 KB
/
expression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from sympy import diff, Poly, symbols, print_python
from sympy.polys.polytools import div
from utils import lambdify, input_expr
import numpy as np
class Expression:
expr = None
coeffs_list = []
def __init__(self, f):
self.expr = f
self.coeffs_list = []
@classmethod
def input(cls, q):
return cls(input_expr(q))
def output(self):
print_python(self.expr)
def when(self, x):
return lambdify(self.expr)(x)
def derivative_when(self, x):
return lambdify(diff(self.expr))(x)
def second_derivative_when(self, x):
return lambdify(diff(diff(self.expr)))(x)
def get_coeffs(self, n = 0):
if (not self.expr.is_polynomial()): raise Exception('Expressão deve ser um polinômio')
if (n < 0 or n > 3): raise Exception('n deve ser estar no intervalo [0, 3]')
coeffs = []
# Função para inverter coeficientes de grau ímpar
invert_odd_degree_coeffs = lambda l: list(map(lambda x: x[1] if x[0] % 2 == 0 else -x[1], enumerate(l)))
# Coeficientes do polinômio
if(self.coeffs_list == []):
self.coeffs_list = list(Poly(self.expr).all_coeffs())
coeffs = self.coeffs_list
if n == 1:
coeffs = self.coeffs_list[::-1]
elif n == 2:
coeffs = invert_odd_degree_coeffs(self.coeffs_list)
elif n == 3:
coeffs = invert_odd_degree_coeffs(self.coeffs_list[::-1])
return coeffs if coeffs[0] > 0 else list(map(lambda x: -x, coeffs))
def get_lowest_degree(self):
coeffs_list = self.get_coeffs()
return len(coeffs_list) - len(np.trim_zeros(coeffs_list))
def get_highest_degree(self) -> int:
return len(self.get_coeffs())
def has_degree(self, degree: float) -> bool:
return (len(self.get_coeffs()) - 1 == degree)
def get_coeff(self, degree: float) -> float:
coeffs = self.get_coeffs()
if(len(coeffs) > degree):
return coeffs[(len(coeffs) - 1) - degree]
return None
def has_x(self):
return symbols('x') in self.expr.free_symbols
def deflate_root_zero(self):
return Expression(div(self.expr, symbols('x') ** self.get_lowest_degree())[0].as_expr())
def get_descartes(self):
sign_list_p = [x/abs(x) for x in self.get_coeffs() if x != 0]
transitions_list_p = [[x, sign_list_p[i + 1]] for (i, x) in enumerate(sign_list_p[:-1])]
np = len([x for x in transitions_list_p if x[0] * x[1] < 0])
sign_list_n = [x/abs(x) for x in self.get_coeffs(n = 2) if x != 0]
transitions_list_n = [[x, sign_list_n[i + 1]] for (i, x) in enumerate(sign_list_n[:-1])]
nn = len([x for x in transitions_list_n if x[0] * x[1] < 0])
# print([i for i in range(np, -1, -2)])
return [i for i in range(np, -1, -2)], [i for i in range(nn, -1, -2)]
def has_real_roots(self):
np, nn = self.get_descartes()
return (np != [0] or nn != [0])
def bolzano(self, interval: list):
a = interval[0]
b = interval[1]
f_a = self.when(a)
f_b = self.when(b)
# [positive, negative]
if f_a >= 0 and f_b <= 0:
return [a, b]
elif f_a <= 0 and f_b >= 0:
return [b, a]
else:
return []