-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
71 lines (55 loc) · 2.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import mymodel
import utils
if __name__ == '__main__':
#argparse constructor
parser = argparse.ArgumentParser(description='Train image classifier model')
parser.add_argument('data_dir',
type=str,
help='directorry of the image dataset')
parser.add_argument('--save_dir',
action='store',
type=str,
nargs='?',
default='myapp_checkpoint.pth',
help='save directory of the model checkpoint'
)
parser.add_argument('--arch',
action='store',
type=str,
nargs='?',
default="vgg16",
choices= ['vgg11', 'vgg13', 'vgg16', 'vgg19'],
help='model architecture'
)
parser.add_argument('--learning_rate',
action='store',
type=float,
nargs='?',
default=0.001,
help='learning rate'
)
parser.add_argument('--hidden_units',
action='store',
nargs='*',
default=[1024, 512],
type=int,
help='size of hidden layers'
)
parser.add_argument('--epochs',
action='store',
type=int,
nargs='?',
default=5,
help='number of epochs for training'
)
parser.add_argument('--gpu',
action='store_true',
help='enable gpu'
)
myargs = parser.parse_args()
dataloaders, image_datasets = utils.load_prep_data(myargs.data_dir)
model = mymodel.mymodel(arch=myargs.arch, hidden_units=myargs.hidden_units)
mymodel.train_model(model, myargs.arch, dataloaders, image_datasets,
hidden_units=myargs.hidden_units, learning_rate=myargs.learning_rate,
epochs=myargs.epochs, save_directory=myargs.save_dir, device=myargs.gpu)