-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
91 lines (72 loc) · 3.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from torchvision import transforms, datasets
import pathlib
from PIL import Image
import numpy as np
import json
def load_prep_data(data_directory):
"""Load and preprocess image data
Arguments:
data_directory {str} -- [directory of the image dataset]
"""
# set data_dirs
data_dir = pathlib.Path(data_directory).resolve()
train_dir = data_dir / 'train'
valid_dir = data_dir / 'valid'
test_dir = data_dir / 'test'
#Define your transforms for the training, validation, and testing sets
data_transforms = {"train": transforms.Compose([transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),
"validation": transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),
"test": transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
}
#Load the datasets with ImageFolder
image_datasets = {"train": datasets.ImageFolder(train_dir, transform = data_transforms["train"]),
"validation": datasets.ImageFolder(valid_dir, transform = data_transforms["validation"]),
"test": datasets.ImageFolder(test_dir, transform = data_transforms["test"] )
}
#Using the image datasets and the trainforms, define the dataloaders
dataloaders = {"train": torch.utils.data.DataLoader(image_datasets["train"], batch_size = 16, shuffle = True),
"validation": torch.utils.data.DataLoader(image_datasets["validation"], batch_size = 16),
"test": torch.utils.data.DataLoader(image_datasets["test"], batch_size = 16)
}
return dataloaders, image_datasets
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
# Process a PIL image for use in a PyTorch model
# load image
img = Image.open(image)
size_img = img.size
# resize image
if size_img[0] > size_img[1]:
img.thumbnail((50000, 256))
else:
img.thumbnail((256, 50000))
# crop image
size_img = img.size
img = img.crop((size_img[0]//2 -(224/2),
size_img[1]//2 - (224/2),
size_img[0]//2 +(224/2),
size_img[1]//2 + (224/2)
))
# normalize image color
img = np.array(img)/255
img = (img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
# adjust np array dimension
img = img.transpose((2, 0, 1))
return img
def load_cat_name(jason_path='cat_to_name.json'):
with open(jason_path, 'r') as f:
cat_to_name = json.load(f)
return cat_to_name