-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathparams.py
51 lines (43 loc) · 3.52 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
PARAMS = {
# Simple RAG parameters
"SIMPLE_RAG_CHUNK_SIZE": 1500, # Size of text chunks for simple RAG processing
"SIMPLE_RAG_OVERLAP": 200, # Overlap between chunks to maintain context
"SIMPLE_RAG_EMBEDDING_MODEL": "text-embedding-ada-002", # Model used for creating embeddings in simple RAG
# Hybrid Vector Graph RAG parameters
"HYBRID_VECTOR_GRAPH_RAG_CHUNK_SIZE": 1500, # Size of text chunks for hybrid vector-graph RAG
"HYBRID_VECTOR_GRAPH_RAG_OVERLAP": 200, # Overlap between chunks in hybrid RAG
"HYBRID_VECTOR_GRAPH_RAG_SUMMARIZATION_GRAPH_NODE_LENGTH": 100, # Length of summarized content in graph nodes
"HYBRID_VECTOR_GRAPH_RAG_SIMILARITY_RETRIEVE_THRESHOLD": 0.9, # Threshold for retrieving similar chunks
"HYBRID_VECTOR_GRAPH_RAG_SIMILARITY_EDGE_THRESHOLD": 0.9, # Threshold for creating edges between similar chunks
"HYBRID_VECTOR_GRAPH_RAG_QUERY_MAX_DEPTH": 3, # Maximum depth for graph traversal during queries
"HYBRID_VECTOR_GRAPH_RAG_QUERY_TOP_K": 3, # Number of top results to return in hybrid RAG queries
"HYBRID_VECTOR_GRAPH_RAG_QUERY_MAX_CONTEXT_LENGTH": 10000, # Maximum context length for hybrid RAG queries
"HYBRID_VECTOR_GRAPH_RAG_EMBEDDING_VECTOR_MODEL": "text-embedding-ada-002", # Model for vector embeddings, use only open ai embedding service
"HYBRID_VECTOR_GRAPH_RAG_SUMMARIZATION_GRAPH_NODE_MODEL": "gpt-4o", # Model for summarizing graph nodes
# Database paths
"CHROMA_DB_PATH": "./tools/rag/database/chroma_db", # Path to ChromaDB used in simple RAG
"LLAMA_INDEX_DB_PATH": "./tools/rag/database/llama_index", # Path for LlamaIndex database
"LLAMA_INDEX_CONTEXT_WINDOW_DB_PATH": "./tools/rag/database/llama_index_context_window", # Path for LlamaIndex context window database
# Llama Index parameters
"LLAMA_INDEX_TOP_K_RAG_RETRIEVE": 5, # Number of top results to retrieve in LlamaIndex RAG
"LLAMA_INDEX_CORPUS_DIR": "./tools/rag/llama_index/corpus", # Directory for LlamaIndex corpus
"LLAMA_INDEX_CONTEXT_WINDOW_CORPUS_DIR": "./tools/rag/llama_index_context_window/corpus", # Directory for LlamaIndex context window corpus
"LLAMA_INDEX_CONTEXT_WINDOW_SIZE_INGEST": 30, # Number of sentences for context window ingestion
"LLAMA_INDEX_CONTEXT_WINDOW_MAX_ADJACENT_CHARS_RAG_RETRIEVE": 150, # Maximum adjacent characters for context window retrieval
"LLAMA_INDEX_CONTEXT_WINDOW_TOP_K_RAG_RETRIEVE": 5, # Number of top chunks to retrieve in context window RAG
# HyDE RAG parameters
"HYDE_RAG_CHUNK_SIZE": 1500, # Size of chunks for HyDE RAG processing
"HYDE_RAG_QUERY_TOP_K": 5, # Number of top results to return in HyDE RAG queries
"HYDE_GENERATE_HYPO_DOC_MODEL": "gpt-4o", # Model used for generating hypothetical documents in HyDE
# Adaptive RAG parameters
"ADAPTIVE_RAG_MODEL": "gpt-4o", # Model used for adaptive RAG processing
"ADAPTIVE_RAG_QUERY_TOP_K": 5, # Number of top results to return in adaptive RAG queries
# Intellichain parameters
"TOOL_HELPER_MODEL": "gpt-4o", # Model used for default tool helper_model
"JSON_PLAN_MODEL": "gpt-4o", # Model used for JSON planning
"EVALUATION_MODEL": "gpt-4o", # Model used for evaluation tasks
"SURF_AI_JSON_TASK_MODEL": "gpt-4o", # Model for SurfAI JSON tasks (requires multimodal capabilities)
# Deep Search parameters
"DEEP_SEARCH_MODEL": "o3-mini", # Model used for deep search functionality
"APPLY_MODEL_OPTIONS": True, # Apply options to the model, from the /models/models_options.py file
}