You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: CHANGELOG.md
+15
Original file line number
Diff line number
Diff line change
@@ -77,3 +77,18 @@ All notable changes to this project will be documented in this file.
77
77
-**Adaptive Retrieval-Augmented Generation RAG:** Focused on retrieval.
78
78
-**Notebooks for RAG Techniques:**
79
79
- Organized all the RAG techniques into dedicated notebooks, each containing detailed explanations aimed at didactic purposes.
80
+
81
+
[1.6.0] - 2025-03-09
82
+
### Added
83
+
-**Ollama Integration for Local LLM Models:**
84
+
- Added support for running LLM models locally through Ollama integration.
85
+
- Users can now pull and run models directly on their machines by prefixing model names with `local_` in configuration (e.g., `local_deepseek-r1`, `local_llama3.3`, `local_phi4`).
86
+
- Provides data privacy, cost efficiency, and offline capability for sensitive applications.
87
+
- Automatically handles model downloading and initialization when specified models aren't already active.
88
+
- Supports running models even without GPU by switching to CPU (with reduced performance).
89
+
-**Model-Specific Options Configuration:**
90
+
- Added capability to set specific options for each Ollama model.
91
+
- Users can now customize parameters like temperature, top_p, top_k, and other inference settings on a per-model basis.
92
+
- Supports all Ollama model configuration options including context size, repetition penalties, and sampling parameters.
93
+
- Enables fine-tuned control over model behavior while maintaining the simplicity of the local integration.
94
+
- Configuration options can be set through the API for advanced model tuning.
AutoCodeAgent redefines AI-powered problem solving by seamlessly integrating three groundbreaking modes:
@@ -20,7 +20,22 @@ You can also benefit from these techniques for educational purposes, as each one
20
20
By fusing these three potent modes, AutoCodeAgent transforms intricate challenges into innovative, actionable solutions, setting a new standard in intelligent automation and advanced research.
21
21
22
22
[Application Setup](#application-setup)
23
-
Step-by-step guide to setting up the project for the first time.
23
+
Step-by-step guide to setting up the project for the first time.
24
+
25
+
AutoCodeAgent provides flexible integration with Large Language Models (LLMs) through both local and cloud-based solutions.
26
+
Our agentic framework can communicate with LLM models in two ways:
27
+
28
+
1.**Local Integration**: Using Ollama to run models directly on your machine using our prebuilt Docker container.
29
+
- Supports running LLM models locally through Ollama integration
30
+
- Pull and run models directly on your machine by prefixing model names with `local_` in configuration (e.g., `local_deepseek-r1`, `local_llama3.3`, `local_phi4`)
31
+
- Automatically handles model downloading and initialization when specified models aren't already active
32
+
- Supports running models even without GPU by switching to CPU (with reduced performance)
33
+
- Customize parameters like temperature, top_p, top_k, and other inference settings on a per-model basis
34
+
35
+
For detailed information about local model management and Ollama integration, please refer to the complete documentation at [models/README.md](models/README.md)
36
+
37
+
2.**Cloud Services**: Connecting to OpenAI's API for access to their hosted models
38
+
24
39
25
40
26
41
## IntelliChain sections
@@ -127,61 +142,32 @@ REDIS_HOST=redis
127
142
REDIS_PORT=6379
128
143
REDIS_DB=0
129
144
130
-
SIMPLE_RAG_CHUNK_SIZE=1500 # chunk size for simple rag
131
-
SIMPLE_RAG_OVERLAP=200 # overlap for simple rag
132
-
SIMPLE_RAG_EMBEDDING_MODEL=text-embedding-ada-002 # simple rag embedding model
133
-
134
-
HYBRID_VECTOR_GRAPH_RAG_CHUNK_SIZE=1500 # chunk size for hybrid vector graph rag
135
-
HYBRID_VECTOR_GRAPH_RAG_OVERLAP=200 # overlap for hybrid vector graph rag
HYBRID_VECTOR_GRAPH_RAG_SIMILARITY_RETRIEVE_THRESHOLD=0.9 # similarity retrieve threshold for hybrid vector graph rag
138
-
HYBRID_VECTOR_GRAPH_RAG_SIMILARITY_EDGE_THRESHOLD=0.9 # similarity edge threshold for hybrid vector graph rag
139
-
HYBRID_VECTOR_GRAPH_RAG_QUERY_MAX_DEPTH=3 # max depth for hybrid vector graph rag
140
-
HYBRID_VECTOR_GRAPH_RAG_QUERY_TOP_K=3 # top k for hybrid vector graph rag
141
-
HYBRID_VECTOR_GRAPH_RAG_QUERY_MAX_CONTEXT_LENGTH=10000 # max context length for hybrid vector graph rag
142
-
HYBRID_VECTOR_GRAPH_RAG_EMBEDDING_VECTOR_MODEL=text-embedding-ada-002 # hybrid vector graph rag embedding vector model
143
-
HYBRID_VECTOR_GRAPH_RAG_SUMMARIZATION_GRAPH_NODE_MODEL=gpt-4o # hybrid vector graph rag summarization graph node model
144
-
145
-
CHROMA_DB_PATH=./tools/rag/database/chroma_db # url for chroma db used in simple rag
146
-
LLAMA_INDEX_DB_PATH=./tools/rag/database/llama_index # url for llama index db used in llama index rag tool
147
-
LLAMA_INDEX_CONTEXT_WINDOW_DB_PATH=./tools/rag/database/llama_index_context_window # url for llama index context window db used in llama index context window rag tool
148
-
LLAMA_INDEX_CORPUS_DIR=./tools/rag/llama_index/corpus # url for llama index corpus used in llama index rag tool
149
-
LLAMA_INDEX_CONTEXT_WINDOW_CORPUS_DIR=./tools/rag/llama_index_context_window/corpus # url for llama index context window corpus used in llama index context window rag tool
150
-
151
-
LLAMA_INDEX_CONTEXT_WINDOW_SIZE_INGEST=30 # sentences for llama index context window ingestion
152
-
LLAMA_INDEX_CONTEXT_WINDOW_MAX_ADJACENT_CHARS_RAG_RETRIEVE=150 # max adjacent characters for llama index context window rag tool
153
-
LLAMA_INDEX_CONTEXT_WINDOW_TOP_K_RAG_RETRIEVE=5 # top k chunks for llama index context window rag tool
154
-
155
-
HYDE_RAG_CHUNK_SIZE=1500 # chunk size for hyde rag tool
156
-
HYDE_RAG_QUERY_TOP_K=5 # query top k for hyde rag tool
157
-
HYDE_GENERATE_HYPO_DOC_MODEL=gpt-4o # generate hyde rag tool model
PASSGMAILAPP=your_password # Gmail app password for default tool send_email
167
147
168
148
ELEVEN_API_KEY=API_KEY # elevenlabs api key for langchain tool
169
149
OPENWEATHERMAP_API_KEY=API_KEY # openweathermap api key for langchain tool
170
150
SERPAPI_API_KEY=API_KEY # serpapi api key for langchain tool and also deep search mode
171
151
SERPER_API_KEY=API_KEY # serpapi api key for deep search mode (optional, the script use serpapi by default)
172
152
```
173
153
174
-
4. Build the Docker image:
154
+
4. File params.py
155
+
The `params.py` file contains a comprehensive configuration dictionary that controls the behavior of AutoCodeAgent 2.0's various RAG (Retrieval-Augmented Generation) systems and tools. This configuration file centralizes all adjustable parameters, making the system highly customizable.
156
+
Additionally, it configures database paths for various vector stores (ChromaDB, LlamaIndex), email functionality credentials, and specifies which AI models to use for different components of the system (tool assistance, planning, evaluation, web automation, and search).
157
+
You can set which models to use throughout the system - whether cloud-based models from OpenAI or local models running through Ollama or any other API-compatible service. Models can be specified by prefixing with "local_" for local models (e.g., "local_llama3") or using the standard model name for cloud services (e.g., "gpt-4o").
158
+
This centralized configuration allows users to set the system's behavior by adjusting parameters without modifying core code.
159
+
160
+
5. Build the Docker image:
175
161
```bash
176
162
docker-compose build
177
163
```
178
164
179
-
5. Run the Docker container:
165
+
6. Run the Docker container:
180
166
```bash
181
167
docker-compose up -d
182
168
```
183
169
184
-
6. Check the backend logs:
170
+
7. Check the backend logs:
185
171
```bash
186
172
docker logs -f flask_app
187
173
```
@@ -190,7 +176,6 @@ If you want to rebuild and restart the application, and optimize docker space:
190
176
docker-compose down
191
177
docker-compose build --no-cache
192
178
docker-compose up -d
193
-
docker system prune -a --volumes -f
194
179
docker builder prune -a -f
195
180
docker logs -f flask_app
196
181
```
@@ -199,16 +184,16 @@ Is a good idea to always check docker space usage after building and starting th
199
184
docker system df
200
185
```
201
186
202
-
7. Access the AI Agent chat interface:
187
+
8. Access the AI Agent chat interface:
203
188
```bash
204
189
http://localhost:5000
205
190
206
191
```
207
-
8. To view the automated browser sessions (powered by SurfAi), open:
192
+
9. To view the automated browser sessions (powered by SurfAi), open:
208
193
```bash
209
194
http://localhost:6901/vnc.html
210
195
```
211
-
9. To explore and interact with the Neo4j graph database, visit:
196
+
10. To explore and interact with the Neo4j graph database, visit:
212
197
```bash
213
198
http://localhost:7474/browser/
214
199
```
@@ -1256,4 +1241,3 @@ By contributing, you agree that your changes will be licensed under the same lic
0 commit comments