-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoobNet.cpp
349 lines (296 loc) · 8.73 KB
/
noobNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#include <iostream>
#include <vector>
#include <Eigen/Dense>
#include "mnist/include/mnist/mnist_reader.hpp"
#include "mnist/include/mnist/mnist_utils.hpp"
// using Eigen::MatrixXd;
using namespace std;
using namespace Eigen;
auto dataset = mnist::read_dataset<std::vector, std::vector, uint8_t, uint8_t>(MNIST_DATA_LOCATION);
MatrixXd training_images(dataset.training_images.size(),dataset.training_images[0].size()),
test_images(dataset.test_images.size(),dataset.training_images[0].size()),
training_labels_unvect(dataset.training_labels.size(),1),
test_labels_unvect (dataset.test_labels.size(),1),
training_labels, test_labels;
MatrixXd vectorise_labels(MatrixXd labels){
MatrixXd vectorised_labels = MatrixXd::Zero(labels.rows(), 10);
for(int i = 0; i<vectorised_labels.rows(); i++)
vectorised_labels(i,int(labels(i,0))) = 1;
return vectorised_labels;
}
void load_dataset(){
for(int i = 0; i<dataset.training_images.size(); i++)
for(int j = 0; j<dataset.training_images[0].size(); j++)
training_images(i,j) = double(dataset.training_images[i][j]);
for(int i = 0; i<dataset.test_images.size(); i++)
for(int j = 0; j<dataset.training_images[0].size(); j++)
test_images(i,j) = double(dataset.test_images[i][j]);
for(int i = 0; i<dataset.training_labels.size(); i++){
training_labels_unvect(i,0) = double(dataset.training_labels[i]);
}
training_labels = vectorise_labels(training_labels_unvect);
for(int i = 0; i<dataset.test_labels.size(); i++){
test_labels_unvect(i,0) = double(dataset.test_labels[i]);
}
test_labels = vectorise_labels(test_labels_unvect);
}
class Layer{
public:
Layer() = default;
virtual MatrixXd forward_routine(const Ref<const MatrixXd>& inputs){}
virtual MatrixXd backward_routine(const Ref<const MatrixXd>& gradients){}
virtual void updateWeights(double, double){}
virtual MatrixXd rloss(){}
};
class fc_layer : public Layer{
int in_units, out_units;
MatrixXd weights;
Eigen::MatrixXd dw, db;
MatrixXd inputs;
public:
fc_layer(int input_units, int output_units){
in_units = input_units;
out_units = output_units;
weights = MatrixXd::Random(in_units,out_units)*0.01;
}
virtual MatrixXd rloss(){
auto w = weights.transpose()*weights;
MatrixXd x(1,1);
x << w.array().sum();
return x;
}
virtual MatrixXd forward_routine(const Ref<const MatrixXd>& i){
inputs = i;
MatrixXd product = (inputs*weights);
return product;
}
virtual MatrixXd backward_routine(const Ref<const MatrixXd>& ddot){
MatrixXd dx;
dw = (ddot.transpose()*inputs).transpose();
dx = ddot*weights.transpose();
return dx;
}
virtual void updateWeights(double step_size, double reg){
dw = dw +(weights*reg);
weights = weights - step_size*dw;
}
};
/*
class conv_layer : public Layer{
int in_units, out_units;
int stride, padding;
MatrixXd weights;
MatrixXd bias;
MatrixXd input;
public:
conv_layer(int input_units, int output_units){
in_units = input_units;
out_units = output_units;
weights = MatrixXd::Random(in_units,out_units);
}
virtual MatrixXd forward_routine(const Ref<const MatrixXd>& inputs){
//product = product + bias;
std::cout<<"called conv";
}
virtual MatrixXd backward_routine(const Ref<const MatrixXd>& e){
}
};
*/
class activation : public Layer
{
int units;
std::string option = "NULL";
MatrixXd outputs;
MatrixXd gradients;
public:
virtual void updateWeights(double learning_rate, double reg){}
virtual MatrixXd rloss(){}
activation(int n, std::string x){
units = n;
option = x;
}
MatrixXd Sigmoid(MatrixXd x){
MatrixXd firing_rate = x;
firing_rate = 1/(1+(-1*firing_rate).array().exp());
outputs = firing_rate;
return firing_rate;
}
MatrixXd Tanh(MatrixXd x){
outputs = x.array().tanh();
return outputs;
}
MatrixXd Relu(MatrixXd x){
for(int i = 0; i< x.rows(); i++){
for(int j = 0; j< x.cols(); j++){
if(x(i,j)>=0) continue;
else x(i,j) = 0;
}
}
outputs = x;
return x;
}
MatrixXd Softmax(MatrixXd x){
/*MatrixXd rt;
for(int i = 0; i<x.rows(); i++)
re.row(i) = x.row(i)/x.row(i).array().exp().sum();
return rt.array().log(); */
for(int i= 0; i< x.rows(); i++){
double denom = x.row(i).array().exp().sum();
for(int j = 0; j<x.cols(); j++){
x(i,j) = exp(double(x(i,j)))/denom;
}
}
outputs = x;
return x;
}
virtual MatrixXd forward_routine(const Ref<const MatrixXd>& inputs){
if(option=="sigmoid") outputs = Sigmoid(inputs);
else if(option=="tanh") outputs = Tanh(inputs);
else if(option=="relu") outputs = Relu(inputs);
else if(option=="softmax") outputs = Softmax(inputs);
else std::cout<<"Activation not supported."<<endl;
return outputs;
}
MatrixXd Sigmoid_b(MatrixXd x){
return outputs.array()*(MatrixXd::Ones(outputs.rows(),outputs.cols())-outputs).array();
}
MatrixXd Tanh_b(MatrixXd x){
}
MatrixXd Relu_b(MatrixXd x){
MatrixXd derivative = x;
for(int i = 0; i< outputs.rows(); i++){
for(int j=0; j<outputs.cols(); j++){
if(outputs(i,j) == 0) derivative(i,j) = 0;
}
}
return derivative;
}
MatrixXd Softmax_b(MatrixXd labels){
auto grad = outputs;
for(int i=0; i<labels.cols(); i++){
if(labels(0,i)==1) grad(0,i) -=1;
}
return grad;
}
virtual MatrixXd backward_routine(const Ref<const MatrixXd>& d){
if(option=="sigmoid") return Sigmoid_b(d);
else if(option=="tanh") return Tanh_b(d);
else if(option=="relu") return Relu_b(d);
else if(option=="softmax") return Softmax_b(d);
else std::cout<<"Activation not supported."<<endl;
}
};
class Model
{
private:
std::vector<Layer*> layers;
double learning_rate, regularization, performance;
MatrixXd input_data, outputs, in_gradient, gradients;
//protected:
public:
Model() = default;
int a;
void add_layer(Layer* layer){
layers.push_back(layer);
}
void setParams(double ss, double r){
learning_rate = ss;
regularization = r;
}
MatrixXd forward_prop(const Ref<const MatrixXd>& temp){
outputs = temp;
for(int i=0; i<layers.size(); i++)
outputs = layers[i]->forward_routine(outputs);
return outputs;
}
MatrixXd back_prop(const Ref<const MatrixXd>& temp){
MatrixXd gradients = temp;
for(int i = layers.size()-1; i>=0; i--){
gradients = layers[i]->backward_routine(gradients);
}
return gradients;
}
virtual void updateWeights(double learning_rate, double reg){
for(int i=0; i<layers.size(); i++)
layers[i]->updateWeights(learning_rate, reg);
}
MatrixXd reg_loss(int batch){
MatrixXd rloss = MatrixXd::Zero(1,batch);
for(int i=0; i<layers.size()-1;i++){
rloss += layers[0]->rloss();
}
return rloss;
}
MatrixXd ce_loss(const Ref<const MatrixXd>& hx, const Ref<const MatrixXd>& y){
MatrixXd data_loss;
data_loss = -1*(y*(hx.transpose())).array().log();
data_loss /= hx.cols();
return data_loss;
}
double l2_loss(const Ref<const MatrixXd>& predictions, const Ref<const MatrixXd>& labels){
return (labels-predictions).array().square().sum();
}
double max(MatrixXd vector){ //assumes a column vector is passed
double m = vector(0,0);
for(int i =0; i<vector.cols(); i++){
if(vector(0,i)>m) m = vector(0,i);
}
return m;
}
double predict(MatrixXd outputs){
for(int i = 0; i<outputs.rows(); i++){
double maximum = max(outputs.row(i));
for(int j=0; j<outputs.cols(); j++){
if(outputs(i,j)<maximum) outputs(i,j) = 0;
if(outputs(i,j)==maximum) outputs(i,j) = 1;
}
}
for(int k= 0; k<outputs.cols(); k++){
if(outputs(0,k)==1) return k;
}
}
void train(int epochs, int batch){
// select a (batch) number of pos elements from 0-60,000
MatrixXd batch_trainimages(batch, training_images.row(0).cols()),
batch_trainlabels(batch, 1);
for(int i=0; i<epochs; i++){
std::cout<<"epoch:"<<epochs+1<<endl;
for(int j=0; j<batch;j++){
std::cout<<"image: "<<j+1<<endl;
auto op = forward_prop(training_images.row(j));
auto er = ce_loss(op, training_labels.row(j));
auto rr = 0.5*regularization*reg_loss(batch);
std::cout<<rr+er;
auto p = back_prop(training_labels.row(j)); // from the op vect, sub 1 where label is 1.
updateWeights(learning_rate,regularization);
}
}
}
void test(){
int score=0;
for(int i=0; i<test_images.rows();i++){
double p = predict(forward_prop(test_images.row(i)));
if(double(test_labels_unvect(i,0))==p) ++score;
}
std::cout<<score<<endl;
std::cout<<(double(score)/double(test_images.rows()));
}
};
int main()
{
Model neuralNet;
load_dataset();
float step_size = 1e-4, reg = 1e-3;
fc_layer l0(784, 50);
fc_layer l1(50, 10);
activation l2(10,"softmax");
neuralNet.add_layer(&l0);
neuralNet.add_layer(&l1);
neuralNet.add_layer(&l2);
neuralNet.setParams(step_size, reg);
std::cout<<"Training..."<<endl;
neuralNet.train(1,50);
std::cout<<"Trained."<<endl;
neuralNet.test();
return 0;
}